

Sanger Sequencing Best and Worst Practices

A resource for troubleshooting your Sanger Sequencing data

Sanger sequencing was first described by Fred Sanger *et al.* in 1977. In 1986, the Applied Biosystem's ABI 370A became the first automatic fluorescence-based Sanger sequencing instrument. That first instrument used a polyacrylamide gel for electrophoresis, could run 16 samples at a time, and produced about 450 bases of sequence per sample. In 1996, Applied Biosystems introduced the ABI 310, which replaced gel electrophoresis with electrophoresis in a single capillary. Improvements in chemistry increased read lengths to 600 bases. The ABI 3730 was released in 2002, and it offered the ability to sequence 48 samples at a time. The MSU Genomics Core has an ABI 3730XL, which sequences 96 samples at a time and can process many 96-well plates per day. Read lengths of 800 to 900 bases are possible with the 3730XL.

More than 45 years after the first description of Sanger sequencing and over 35 years since the first automated Sanger sequencing instrument was first introduced, Sanger sequencing is still an important tool for molecular genetics. While automated Sanger sequencing is extremely convenient, it has been around for so long that many researchers take it for granted. To keep costs low, most Sanger sequencing facilities prepare 1/16th reactions, which use very small amounts of template, primer and fluorescent reaction mix. The nature of these small volume reactions means that when templates and primers are not present at prescribed levels, the quality of the sequence data may suffer.

In the RTSF Genomics Core, we have seen many examples of how improper template or primer preparation can affect Sanger sequencing quality. This Sanger Sequencing guide has been developed to show best and worst practices when performing Sanger Sequencing. This guide shows examples of good- and poor-quality sequence. Explanations are provided about how results were obtained. In particular, examples of poor-quality sequences are provided to help researchers to troubleshoot their own Sanger sequencing results.

The pGEM-3Zf(+) control (supplied with BigDye Terminator v3.1 Cycle Sequencing Kit, Applied Biosystems, part number 4337456 or Promega, part number P2271) was used as the template for the examples in this guide (except where noted). Sequence Scanner 2 software (free from ThermoFisher) was used to view the results (.ab1 files) and capture images for this guide. There are many options available to view Sanger Sequencing (.ab1) files. The Genomics Core does not recommend a particular software. You will have to determine which software works best for your situation. A non-exhaustive list of available software is available on page 27.

Table of Contents

Page #	Description
3	Best Practices
4	Anatomy of the Electropherogram
5-7	Assessing your Sanger Sequencing Results
8	Where do I find the signal intensity?
9	Example 1: Correct template and primer concentration (plasmid)
10	Example 2a: 1/10 th recommended template (plasmid)
11	Example 2b: 1/100 th recommended template (plasmid)
12	Comparison & Summary: Samples with too little template (plasmid)
13	Example 3: Correct template and primer concentration (PCR product)
14	Example 4a: 1/10 th recommended template (PCR Product)
15	Example 4b: 1/100 th recommended template (PCR Product)
16	Comparison & Summary: Samples with too little template (PCR product)
17	Example 5: 5X recommended template (plasmid)
18	Example 6: 5X recommended template (PCR product)
19	Example 7a: 1/10 th recommended primer concentration (plasmid)
20	Example 7b: 1/100 th recommended primer concentration (plasmid)
21	Comparison & Summary: Samples with too little primer (plasmid)
22	Comparison & Summary: Samples with too much primer (Examples 8a & 8b – plasmid)
23	Example 9a: Two primers (1X primary & 1X secondary) (plasmid)
24	Example 9b: Two primers (1X primary & 1/10 th secondary) (plasmid)
25	Example 10: Mixed Template (PCR product)
26	Example 11: Slippage (PCR product)
27	Software for viewing Sanger Sequencing Data
28	File descriptions & where to download

Best Practices

The RTSF Genomics Core's Sanger Sequencing sample requirements are briefly described below. For detailed requirements, please see the following webpage:

https://rtsf.natsci.msu.edu/genomics/sample-requirements/sanger-sequencing-sample-requirements.aspx

The RTSF Genomics Core accepts samples in which the researcher has already added their own primer, or the researcher can submit the sample and request that the Core add one of six available in-house primers (M13 forward, M13 reverse, SP6, T7, T7 terminator, or T3).

Fluorometric quantification, such as Qubit, is recommended. NanoDrop concentrations are inaccurate and often overestimate sample concentration by 10-fold or more. The most common culprit of poor sequencing results is insufficient template. The recommended DNA and primer concentrations are given in the table below.

		When prime RESEA	r is added by RCHER	When primer is added by GENOMICS CORE		
Sample Type & Size	DNA Mass (ng)*	Volume of 10μΜ primer to add (μl)	Total Volume (μl)	Volume of 10μΜ primer to add (μl)	Total Volume (μl)	
	Plasmid					
Single-stranded DNA	200	3	12	0	8	
Double-stranded DNA (up to 10 kb)	1000	3	12	0	8	
	Purified PCR Pr	roduct	-			
<100 – 200 bp	2 - 6	3	12	0	8	
200 – 500 bp	6 - 15	3	12	0	8	
500 – 1000 bp	10 - 40	3	12	0	8	
1000 – 2000 bp	20 - 80	3	12	0	8	
>2000 bp	80 - 200	3	12	0	8	

*Please note that these are general recommendations and optimization may be required by the researcher.

To sequence in both the forward and reverse direction, two reactions are required. One primer is added per reaction.
Template + Forward Primer Template + Reverse Primer

For PCR products it is crucial to purify the products to remove remaining primers, unincorporated nucleotides, enzyme, buffer, and salts. Recommended purification methods include bead or column-based purification, enzymatic cleanup (i.e. ExoSAP-IT), or gel extraction. Additionally, it is important to visualize PCR products on an agarose gel to confirm that only one product has been generated. Reactions containing multiple PCR products (i.e. desired product and an off-target product) will result in unusable data.

The Genomics Core will return the Sanger sequencing result in the form of an .ab1 file. One .ab1 file is returned per reaction. Results are uploaded to Genomics Depot for researchers to download. It is the responsibility of the researcher to download and save all data files. The Genomics Core will retain data for only 6 months from time of collection

Anatomy of the Electropherogram

The electropherogram below is labeled to show the various aspects that should be reviewed when assessing the quality of the sequence. The sequence immediately below was viewed with Sequence Scanner 2 software. Sequence Scanner 2 was used to collect the images for this guide, except where noted.

Other software (free or paid) is available for viewing Sanger Sequencing data. The same sequence from the image above was viewed with two other (free) software programs, SnapGene Viewer (left image) and 4Peaks (right image), to show how they compare to Sequence Scanner 2.

Assessing your Sanger Sequencing results

When reviewing your Sanger sequencing results, it is important to **visually** review the electropherogram, sequence quality, and signal intensity to determine if your results are high quality. Start by viewing the electropherogram.

Basic Expectations of the Electropherogram

The beginning of the sequence

The quality of the first 25 to 35 bases of the sequence is expected to be poor. In this electropherogram, the quality is poor through the first 25 bases. After the initial poorquality bases, the quality improves, the peaks are sharp and there is no background noise.

The middle of the sequence

After the first 25-35 bases of a high-quality sample, you should expect:

- high quality values
- sharp peaks –
- good signal intensity -
- very little to no background noise -

As the sequence continues, the signal intensity decreases. In the figure to the right, the signal intensity has dropped noticeably by position 600. The quality is still high – the peaks are well defined, the signal intensity is >175 RFU, and there is little to no background noise.

The end of the sequence

Sequence lengths of 800 to 900 bases are possible for high-quality templates. It is common for the the signal intensity and quality to decrease as the read gets longer. In the electropherogram to the right, the signal intensity is lower than it was at the beginning and middle of the read, the quality is beginning to drop, and the peaks are broader. While sequence beyond 900 bases may be useful, those bases should be interpreted with caution.

Sequence and Base Call Quality

The base call quality can be assessed by looking at the quality bars on electropherogram itself, or if your program allows, you can review the base call quality in conjunction with the sequence as seen below. The sequence immediately below is the same sequence that was viewed in the electropherograms on the previous page.

Example of a high-quality sequence

Example of a poor-quality sequence

The base calls are low to medium quality throughout the entire sequence – indicated by red and yellow. There are very few consecutive high-quality base calls (blue). **This sequence is unusable.**

1	GAAATATAAC	GAATATTTAT	tattccata <mark>c</mark>	AAGATT <mark>C</mark> TGG	ACTTAACTAC	TTATTTAACT	60
61	TG <mark>A</mark> ATGCAGG	ATGTGGCTTG	AGAATACCA <mark>T</mark>	GG <mark>T</mark> GTCACCT	AAT <mark>T</mark> AGTTTG	GTGTTTTCAT	120
121	GGT <mark>CA</mark> TAGCT	GTCTCCTGTG	TGAA <mark>A</mark> TTG <mark>G</mark> C	ATCCGCTCAC	a <mark>t</mark> ttcc <mark>a</mark> cac	aacatact <mark>a</mark> g	180
181	CCGGAAGCAT	AAAGT <mark>G</mark> TAAA	GCCT <mark>G</mark> AAG <mark>TG</mark>	CCTAATAAGT	G <mark>A</mark> GCTAACTC	ACATTAATTG	240
241	CGTTGCGCTC	ACTGCCCGCT	T <mark>T</mark> CGAGTCG <mark>G</mark>	AAAAC <mark>CTGTC</mark>	GT <mark>GC</mark> CAGCTG	CCTTAAT <mark>GA</mark> A	300
301	TCGGCCAACG	CG <mark>CG</mark> GGGAGA	G <mark>GT</mark> GGTTT <mark>GC</mark>	GTATTG <mark>G</mark> GCC	CTCTTCC <mark>G</mark> CT	TCCTCGCTCA	360
361	CT <mark>GAC</mark> TCACT	GC <mark>G</mark> CTCGG <mark>T</mark> C	GT <mark>TCG</mark> G <mark>C</mark> TGC	GCCG <mark>AGC</mark> GA	ATCAGCTCAC	TCAAAGGCGG	420
421	TAATAC <mark>G</mark> GTT	ATCCTCAGAA	TCAGGG <mark>G</mark> ATA	ACGC <mark>A</mark> GGAAA	G <mark>AA</mark> CATGTGA	GCAAAAGGCC	480
481	A <mark>GCAAA</mark> AGGC	CAGGAACCGT	AAAAAGG <mark>C</mark> CG	C <mark>G</mark> TTGCTGGC	GTTTTTCCAT	ATGCTCCGCC	540
541	CCC <mark>CTGAC</mark> GA	GC <mark>A</mark> TCACAAA	aatc <mark>g</mark> acgct	CAAG <mark>T</mark> CCAGA	GGTGGGCTAA	ACCCG <mark>AC</mark> AGG	600
601	<mark>a</mark> ctatattca	T <mark>AC</mark> CAGGCGT	TTCCCC <mark>C</mark> TG <mark>G</mark>	AA <mark>GCTCC</mark> CTC	ATGCGCTCTC	CTG <mark>TT</mark> CCGAC	660
661	CCTG <mark>C</mark> CCGCT	TACC <mark>GG</mark> AT <mark>AC</mark>	CTGTCCGCCT	TTCTCCCTTC	gg <mark>gaag</mark> cgtg	GCGCTTTC	720
721	ATAGCTC <mark>A</mark> CG	C <mark>TGT</mark> AGGTAT	CTCA <mark>GATTG</mark> G	TGTA <mark>G</mark> GTCGT	TTCGCTCCAA	GCTGG <mark>GGC</mark> TG	780
781	TGTGCACGAA	CCCCCCGTTC	agc <mark>c</mark> cg <mark>a</mark> ctg	CTGCGCCTTA	TCCGG <mark>T</mark> AAC <mark>T</mark>	ATC <mark>G</mark> TCTTGA	840
841	TTCCACCC <mark>CG</mark>	CAACG <mark>A</mark> CACG	act <mark>tatc</mark> gc	CAC <mark>TG</mark> GCAG <mark>C</mark>	AACCACTGGT	AACAG <mark>GATT</mark> A	900
901	G <mark>CAGA</mark> GCGA						909
			Pure Base QV	1	Mixed Base	e QV	
			High 📃	Medium Lo	w 📕 🛛 High 📕	Medium	Low

Signal Intensity

The average raw signal intensities should be between 175 to 10,000 RFU (relative fluorescence units). Data with average raw signal intensities below 175 RFU or above 10,000 RFU often result in poor-quality data and should not be used. The example on the left has signal intensities in the acceptable range. The example on the right has very low signal intensities – this sequence data was unusable.

-	
▼ Data Analysis	
Basecaller	KB.bcp
Basecaller Version	KB 1.4.1.8
Mobility File	KB_3730_POP7_BDTv3.mob
Basecall Date/Time	2023-09-05 07:28:20 -04:00
Total # of Scans Collected	29961
Basecall Start Scan#	2183
Basecall Stop Scan#	25953
Peak 1 Scan#	2181
Base Spacing	20.1
Average Raw Signal Intensity	A(890),C(1324),G(664),T(1411)
Average Noise	A(7) , C(7) , G(6) , T(8)
Average Raw Signal to Noise Ratio	A(121), C(193), G(117), T(167)
Trace Score	39
Contiguous Read Length	1001
QV20+ (# Bases w QV >=20)	1002

Good Signal Intensities

Low/Poor Signal Intensities

Basecaller	KB.bcp
Basecaller Version	KB 1.4.2.5
Mobility File	KB_3730_POP7_BDTv3.mob
Basecall Date/Time	2023-10-09 07:25:24 -05:00
Total # of Scans Collected	29961
Basecall Start Scan#	2260
Basecall Stop Scan#	25789
Peak 1 Scan#	2258
Base Spacing	20.18
Average Raw Signal Intensity	A(56),C(68),G(39),T(83)
Average Noise	A(9), C(10), G(7), T(13)
Average Raw Signal to Noise Ratio	A(5), C(6), G(5), T(6)
Trace Score	13
Contiguous Read Length	5
QV20+ (# Bases w QV >=20)	106

Quality Values

A quality value (QV) is given for each base. The QV is the probability of a basecall error. For example, a QV of 20 means that the error rate is 1% for that basecall.

Quality Value = -10log _{10 (Pe)}							
Pe is probability of error							
	KB based	aller den	erates QV	's from 1	to 99		
Tvni	cal high g	uality nur	e hases w	ill have C	V 20- 50		
Typic	oal hiah ar	iality mix	od bacoc y	will have u	OV 10 50		
Cine e	an nigh qu	ACTION PROVIDENT		whice they	QV-50.00		
Size a	ria color c	or Qivis pa	ars are ide	ntical for	QVS 50-99		
			_				
QV	Pe	QV	Pe	QV	Pe		
1	79%	21	0.790%	41	0.0079%		
2	63%	22	0.630%	42	0.0063%		
3	50%	23	0.500%	43	0.0050%		
4	39%	24	0.390%	44	0.0039%		
5	31%	25	0.310%	45	0.0031%		
6	25%	26	0.250%	46	0.0025%		
7	20%	27	0.200%	47	0.0020%		
8	15%	28	0.150%	48	0.0015%		
9	12%	29	0.120%	49	0.0012%		
10	10%	30	0.100%	50	0.0010%		
11	7.9%	31	0.079%	60	0.0001%		
12	6.3%	32	0.063%	70	0.00001%		
13	5.0%	33	0.050%	80	0.000001%		
14	4.0%	34	0.040%	90	0.0000001%		
15	3.2%	35	0.032%	99	0.00000012%		
16	2.5%	36	0.025%				
17	2.0%	37	0.020%				
18	1.6%	38	0.016%				
19	1.3%	39	0.013%				
20	1.0%	40	0.010%				

Where do I find the signal intensity?

Sequence Scanner 2

Open the file in Sequence Scanner 2; click "Annotation" at the bottom of the screen; and the window will switch to the annotation view.

SnapGene Viewer

Open the file in SnapGene Viewer; click "Chromatogram Data" at the bottom of the window. Click "Parameters" when the new window opens.

4Peaks

Open the file in 4Peaks; click the "i" icon in the bottom right corner and a new window will open.

Example 1: Correct template and primer concentration (plasmid)

This is an example of a good sequencing reaction that resulted in high quality data. The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

Template Mass	Number of Primers Added	Volume of 10µM Primer	Total Volume	File Name
1000 ng	1	3 µl	12 µl	1_correct_plasmid.ab1

Position 200

The criteria that make this a high-quality sequence are:

- Quality values are high / throughout the read
- Signal intensity is > 175 RFU
- Each position only has one peak (i.e. one assigned base – call)
- There is no background noise (i.e. peaks along the bottom of the electropherogram)

Position 795

At position 795, the signal intensity has decreased, but continues to be ~200 RFU. The quality values continue to be high, each position has only one peak (i.e. assigned base call) and there is no background noise.

Sequence Annotation and Quality

The base calls in blue are high-quality bases with only one base being called. The sequence quality begins to drop at base 909 (yellow and red bases).

1	<mark>g</mark> ggacgtaac	TACTATAG <mark>G</mark> G	CGATTCGAGC	TCGGTACCCG	ggg <mark>at</mark> cctct	AGAGTCGACC	TGCAGGCATG	70	
71	CAAGCTTGAG	TATTCTATAG	TGTCACCTAA	ATAGCTTGGC	GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	140	
141	AAATTGTTAT	CCGCTCACAA	TTCCACACAA	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	210	
211	TAATGAGTGA	GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT	280	
281	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCT	CTTCCGCTTC	350	
351	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	420	
421	ATACGGTTAT	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	490	
491	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	560	
561	TCGACGCTCA	AGTCAGAGGT	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	CCCTGGAAGC	630	
631	TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA	700	
701	GCGTGGCGCT	TTCTCATAGC	TCACGCTGTA	G GTATCTCAG	TTCGGTGTAG	GTCGTTCGCT	CCAAGCTGGG	770	
771	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	TTATCCGGTA	ACTATCGTCT	TGAGTCCAAC	840	
841	CCGGTAAGA <mark>C</mark>	ACGACTTATC	GCC <mark>ACTGG</mark> CA	gcagcc <mark>a</mark> ctg	gta <mark>a</mark> caggat	TAGCAGA <mark>G</mark> CG	aggtatgt <mark>a</mark> g	910	
911	GCGGTGCTAC	AGAGTTCTTG	AAGTGG <mark>TG</mark> GC	C <mark>CTAA</mark> CTACG	g <mark>ctaca</mark> ctag	AA <mark>G</mark> AA <mark>C</mark> AGTA	TTTGG <mark>T</mark> ATCT	980	
981	GCGCTCTGCT	GAAGCCAGTT	ACC <mark>TTTC</mark> GGA	<mark>AAA</mark> AGAG <mark>TT</mark> G	GTAGCTCTTG	atccggca <mark>a</mark> a	CAAACCACCG	1050	
1051	C <mark>TGG</mark> TAGCG <mark>G</mark>	TGGTTTTTTT	TGTTTGCAGC	agc <mark>ag</mark> attac	GCCGCAGA <mark>AA</mark>	AAAAAGGATC	TCAAGA <mark>A</mark> GAT	1120	
1121	CCT <mark>T</mark> TGATCT	TTT <mark>TC</mark> TACGG	GGTCTGACGC	CTCAGGTGGA	CG <mark>AAAA</mark> CCTC	A <mark>CGGTTAGGG</mark>	AT <mark>T</mark> TG <mark>G</mark> TCAT	1190	
1191	ggaattatcc	A <mark>AA</mark> AGGATCT	TCACCTAGAT	T <mark>CT</mark> TTAATT	AAA <mark>ATGG</mark> AGT	TTAATCATCT	<mark>AA</mark> GGTAATAT	1260	
1261	GGAGTACTTG	CTCTGAACGT	AGATTGC <mark>T</mark> TA	TCA <mark>G</mark> GTGAGC	ACGTA <mark>T</mark> TCTC	AGCGAATCGG	CTATCGATTO	1330	
1331	aatcgat <mark>a</mark> gc	TGCCTTGACT	CCGGTTCGGT	TGAATTAC				1368	
				P	ure Base QV		Mixed Base Q	V	
				H	ligh Mediu	m Low	High	Medium	Lo

Signal Intensity

Acceptable range: 664 to 1411 RFU.

 Data Analysis 		
Basecaller	Basecaller	
Basecaller Version		KB 1.4.1.8
Mobility File		KB_3730_POP7_BDTv3.mob
Basecall Date/Time		2023-09-05 07:28:20 -04:00
Total # of Scans Collected		29961
Basecall Start Scan#		2183
Basecall Stop Scan#		25953
Peak 1 Scan#		2181
Base Spacing		20.1
Average Raw Signal Intensity	/	A(890), C(1324), G(664), T(1411)
Average Noise		A(7) , C(7) , G(6) , T(8)
Average Raw Signal to Noise	Ratio	A(121), C(193), G(117), T(167)
Trace Score	39	
Contiguous Read Length	1001	
QV20+ (# Bases w QV >=20)		1002

Example 2a: 1/10th recommended template (plasmid)

The template was diluted to 1/10th the recommendation. The primer was added at the correct concentration. The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

Template Mass	Number of Primers Added	Volume of 10µM Primer	Total Volume	File Name
100 ng	1	3 µl	12 µl	2a_0.1_template_plasmid.ab1

The quality of this sequence is still good despite having a lower than recommended template mass. There are two characteristics that indicate that the template mass was lower than recommended. 1.) There is noise; these are the peaks along the bottom of the electropherogram. This is most pronounced around position 70 of this example, but it can be seen throughout the read. 2.) The signal intensities are lower than was observed in Example 1 (correct template), however, the signal intensities are still above the threshold of 175 RFU.

Sequence Annotation and Quality

The base calls in blue are high quality with only one base being called. The sequence quality begins to drop around base 904 (yellow and red bases). The quality of this sequence is high, like Example 1 (correct template).

Signal Intensity

The Average Raw Signal Intensities are in the acceptable range.

A(194), C(232), G(230), T(241)

Sequence is good. No changes needed.

Example 2b: 1/100th recommended template (plasmid)

The template was diluted to 1/100th the recommendation. The primer was added at the correct concentration. The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

Sequence Annotation and Quality

The base calls in yellow and red are medium and low quality, respectively. Most of the sequence has medium to low quality base calls with a few bases that are high quality, but noncontinuous. **This sequence is poor quality and should not be used.**

1	GAAATATAAC	GAATATTTAT	TATTCCATA <mark>C</mark>	AAGATT <mark>C</mark> TGG	ACTTAACTAC	TTATTTAACT	60
61	tg <mark>a</mark> atgcagg	ATGTGGCTTG	AGAATACCA <mark>T</mark>	GG <mark>T</mark> GTCACCT	AAT <mark>TAGTTTG</mark>	GTGTTTTCAT	120
121	<mark>ggtc</mark> atagct	GTCTCCTGTG	TGAA <mark>A</mark> TTG <mark>G</mark> C	ATCCGCTCAC	a <mark>t</mark> ttcc <mark>a</mark> cac	AACATACT <mark>A</mark> G	180
181	CCG <mark>GA</mark> AGCAT	AAAGT <mark>G</mark> TAAA	GCCT <mark>G</mark> AAG <mark>TG</mark>	CCTAATAAGT	G <mark>A</mark> GCTAACTC	ACATTAATTG	240
241	CGTTGCGCTC	ACTGCCCG <mark>CT</mark>	T <mark>T</mark> CGAGTCG <mark>G</mark>	AAAACCTGTC	GT <mark>GCCA</mark> GCTG	CCTTAAT <mark>GA</mark> A	300
301	TCGGCCAACG	CG <mark>CG</mark> GGGAGA	G <mark>GTGGTTTGC</mark>	GTATTGGGCC	CTCTTCC <mark>G</mark> CT	TCCTCGCTCA	360
361	CT <mark>GAC</mark> TCACT	GC <mark>G</mark> CTCGGTC	GT <mark>TCG</mark> G <mark>C</mark> TGC	GCCG <mark>AGC</mark> GGA	ATCAGCTCAC	TCAAAGGCGG	420
421	TAATAC <mark>G</mark> GTT	ATCCTCAGAA	TCAGGG <mark>G</mark> ATA	ACGC <mark>A</mark> GGAAA	GAACATGTGA	GCAAAAGGCC	480
481	AGC <mark>AA</mark> AAGGC	CAGGAACCGT	AAAAAGG <mark>C</mark> CG	C <mark>G</mark> TTGCTGG <mark>C</mark>	GTTTTTCCAT	ATGCTCCGCC	540
541	CCC <mark>C</mark> TGAC <mark>G</mark> A	GC <mark>A</mark> TCACAAA	AATC <mark>G</mark> ACGCT	CAAG <mark>T</mark> CCAGA	GGTGGGCTAA	ACCCG <mark>AC</mark> AGG	600
601	ACTATATTCA	T <mark>AC</mark> CAGGCGT	TTCCCC <mark>C</mark> TG <mark>G</mark>	AAGCTCCCTC	ATGCGCTCTC	CTGTTCCGAC	660
661	CCTG <mark>C</mark> CCGCT	TACC <mark>GG</mark> ATAC	CTGTCCGCCT	TTCTCCCTTC	GG <mark>GAAG</mark> CGTG	GCGCTTTCTC	720
721	atagete <mark>a</mark> eg	C <mark>TGTAGG</mark> TA <mark>T</mark>	CTCA <mark>GATTG</mark> G	TGTA <mark>G</mark> GTCGT	TTCGCTCCAA	GCTGG <mark>GGC</mark> TG	780
781	TGTG <mark>CA</mark> CGAA	CCCCCCGTTC	agc <mark>c</mark> cg <mark>a</mark> ctg	CTGCGCCTTA	TCCGG <mark>T</mark> AAC <mark>T</mark>	ATC <mark>GTC</mark> TTGA	840
841	TTCCACCCCG	CAACG <mark>A</mark> CACG	act <mark>ttatc</mark> gc	CAC <mark>TG</mark> GCAGC	AACCACTGGT	AACAG <mark>GATT</mark> A	900
901	G <mark>CAGAG</mark> CGA						909
			- Pure Ba	se QV	Mixed Bas	e QV	
			High	Medium	Low High	Medium	Low

Signal Intensity

The Average Raw Signal Intensities are below the cut off (175 RFU).

A(44),C(47),G(39),T(54)

Summary

Sequence is poor quality and should not be used.

To improve results, quantify sample with fluorometric method, such as Qubit. Submit fresh sample using recommended mass. Note that the NanoDrop is not an accurate method for quantifying nucleic acids.

Comparison & Summary: Samples with too little template (plasmid)

The panel below shows how the quality of the sequence decreases as the amount of template decreases. The correct template mass (example 1) is on top, 1/10th the recommended template mass (example 2a) is in the middle, and 1/100th the recommended template mass (example 2b) is on the bottom. Two regions of the electropherogram are displayed: position 200 on the left and position 795 on the right. The average raw signal intensities are also displayed for each example.

Examples 1 and 2a are good quality sequences. While example 2a used $1/10^{th}$ the recommended template and still achieved a good quality result, it should be noted that this is not necessarily expected or recommended. However, it does demonstrate that high quality templates may generate acceptable quality data even when deviating from recommended inputs. Example 2b is a poor-quality sequence and should not be used. Refer to pages 9 - 11 for a more detailed summary of each example.

Example 3: Correct template and primer concentration (PCR product)

This is an example of a good sequencing reaction that resulted in high quality data. The template source is a 408 bp double stranded PCR product that was purified with ExoSAP-it.

Template Mass	Number of Primers Added	Volume of 10µM Primer	Total Volume	File Name
15 ng	1	3 µl	12 µl	3_correct_PCR_product.ab1

Position 200

The criteria that make this a high-quality sequence are:

- Quality values are high / throughout the read
- Signal intensity is > 175 RFU
- Each position only has one peak (i.e. one assigned base call)
- There is very little to no ______ background noise (i.e. peaks along the bottom of the electropherogram)

End of sequence

At position 381 the sequence abruptly ends. This is expected because the template is a PCR product.

Sequence Annotation and Quality

1	GGGGGATTGG	GGGTGGGGC <mark>A</mark>	gat <mark>cga</mark> cca <mark>g</mark>	gcga <mark>ca</mark> taaa	TGATGACAGG	AGAAGAATGC	ACCCGAGATC	70	
71	TTCCTTTAAG	GCTTTTCTGG	AGGTCGTCAA	GTGGAGGAGT	GTCCCTTGGG	AAGATGTTGA	GATGGATGCA	140	
141	ATTCACTCGT	TGCAACTCAT	ATTGCGGGGT	TCCTTGCAAG	ACGAGATGCC	AATTGATAAC	AACAATAATA	210	
211	ACACGAAATC	GATTGTTAAG	TCATCTGATG	ATACAAGAAG	AATACAACTA	TATGATGAGT	TGAGAACAGT	280	
281	TACTAATGAG	ATGGTTCGGC	TAATTGAGAC	AGCAACTGTC	CCTATATTGG	CAGTTGATGC	GATCGGTAAC	350	
351	ATAAATGGAT	ggaacagc <mark>aa</mark>	act <mark>actg</mark> agc	C <mark>AATTC</mark> ATCT	AACATCATCT	TCTTCTTTTT	TTTTTTCAC	420	
421	C <mark>GCC</mark> CCTGGT	TGGGAGGGAA	TGAGAAACGA	ATCTATA <mark>G</mark> TT	acg <mark>gactgtt</mark>	TTCTTCC		477	
Pure Base QV High Low Mixed Base QV High Medium Low Medium Medium Medium Medium Low Medium Low Medium Low Medium Low Medium Low Medium Medium Low Medium Low Medium Low Medium Low Medium Mediu									

Signal Intensity is in the acceptable range

A(1522), C(863), G(950), T(1458)

Example 4a: 1/10th recommended template (PCR product)

The template was diluted to 1/10th the recommendation. The primer was added at the correct concentration. The template source is a 408 bp double stranded PCR product that was purified with ExoSAP-it.

Template Mass	Number of Primers Added	Volume of 10µM Primer	Total Volume	File Name
1.5 ng	1	3 µl	12 µl	4a_0.1_template_PCR_product.ab1

Position 210

The criteria that make this an acceptable quality sequence are:

- Quality values are high / throughout the read
- Signal intensity is > 175 RFU
- Each position only has one peak (i.e. one assigned base call)
- There is some background noise (i.e. peaks along the bottom of _____ the electropherogram), but the true base call can be determined.

End of sequence

Quality and signal intensity continue to be high until the end of the read. The background noise continues as well, but the base calls can still be determined.

At position 389 the sequence abruptly ends. This is expected because the template is a PCR product.

Sequence Annotation and Quality										
1	CGGGGGGTAA	GTGAGGTGGT	GTGGGCAGAT	CGACCA <mark>GGCG</mark>	ACATAAATGA	T GACAGGAGA	aga <mark>a</mark> tgcacc	70		
71	cga <mark>ga</mark> tcttc	CTTTAAGGCT	TTTCTGGAGG	TCGTCAAGTG	GAGGAGTGTC	CCTTGGGAAG	ATGTTGAGAT	140		
141	GGATGCAATT	CACTCGTTGC	AACTCATATT	GCGGGGTTCC	TTGCAAGACG	AGATGCCAAT	TGATAACAAC	210		
211	AATAATAACA	CGAAATCGAT	TGTTAAGTCA	TCTGATGATA	CAAGAAGAAT	ACAACTATAT	GATGAGTTGA	280		
281	GAACAGTTAC	TAATGAGATG	GTTCGGCTAA	TTGAGACAGC	AACTGTCCCT	ATATTGGCAG	TTGATGCGAT	350		
351	CGGTAACATA	AATGGATGGA	ACAGCAAAGC	TACTGAGCAT	A <mark>A</mark> TTT <mark>AA</mark> TCT	ACCAGCTTCT	TTTTCTATT	420		
421	C <mark>TTTT</mark> TTATC	TCCGCCGCTT	G <mark>C</mark> TTGGAATA	AAA <mark>AACZAA</mark> C	CTATT <mark>GT</mark> TAA	CGACTG <mark>TT</mark> TT	TACTCTTCAA	490		
491	ga <mark>t</mark> gac <mark>aa</mark> aa	ATAC <mark>CAAA<mark>TT</mark></mark>	ACTCCTGCTG	TATT	Pure Base QV	Mixed Base QV		524		
	The base Basecalls	calls end at 389 beyond this poin	in the electrophe t should be ignor	Sequence is good.						
	Signal Intensit A(204	y is in the acce),C(129),G(171),T	otable range (185)	No c	hanges no	eeded.				

Example 4b: 1/100th recommended template (PCR product)

The template was diluted to 1/100th the recommendation. The primer was added at the correct concentration. The template source is a 408 bp double stranded PCR product that was purified with ExoSAP-it.

Template Mass	Number of Primers Added	Volume of 10µM Primer	Total Volume	File Name
0.15 ng	1	3 μΙ	12 µl	4b_0.01_template_PCR_product.ab1

Manstan

Maran

Sequence Annotation and Quality

position.

This sequence is made up almost exclusively of low-quality base calls (red). This is a failed sequence and cannot be used.

1	CGCTCAATGG	TCTTTGGGGG	GGTTTACCTC	TCCCGGGCGA	CTCTTTTGAT	TATG <mark>G</mark> AAAAG	atg <mark>cc</mark> cgga	70
71	TT <mark>T</mark> TTTCTTT	TCG <mark>G</mark> TTTTTC	T <mark>G</mark> GGGGCATT	AAG <mark>GG</mark> GCC <mark>GA</mark>	GTGCCCCTTG	GGCTG <mark>A</mark> TGTT	ATGATGCATG	140
141	AAA <mark>TT</mark> CTCCC	CTTGCTC <mark>C</mark> TA	ATA <mark>TTG</mark> C <mark>GG</mark> G	GTTCC <mark>T</mark> G <mark>G</mark> TT	GAGCACTCTG	CTACTTGATG	ACACCAACAA	210
211	TCTCACA <mark>AA</mark> G	TCGATT <mark>G</mark> GTA	ATACCT <mark>C</mark> TGA	gaatc <mark>caaga</mark>	AAAATC <mark>C</mark> ACC	CATT <mark>T</mark> TCTGA	T <mark>TTGA</mark> GATCA	280
281	CCTACTAATG	AAAT <mark>G</mark> GTTCG	gctat <mark>tg</mark> aa	AAAC <mark>C</mark> CCTGT	CCCTATTTG	CCTTGCCAGC	CTTCCGGTAC	350
351	AAAAAAG <mark>G</mark> GA	TG <mark>G</mark> AACACTG	TTAT <mark>C</mark> TTCTG	ATTACCTCCC	C <mark>A</mark> CC <mark>A</mark> TCTTT	TTCTATTTTT	TTTTTTCCCT	420
421	CTCCCCTTCC	TTGGAATGAC	A					441
			Pure Bas	e QV	Mixed Bas	e QV		
			High	Medium	Low High	Medium L	ow	

Signal Intensity is below the acceptable range.

A(61), C(59), G(49), T(74)

Summary

Amana Maria Mana Mana

Sequence is poor quality and should not be used.

To improve results, quantify sample with fluorometric method, such as Qubit. Submit fresh sample using recommended mass. Note that the NanoDrop is not an accurate method for quantifying nucleic acids.

Comparison & Summary: Too little template (PCR product)

The panel below shows how the quality of the sequence decreases as the amount of template decreases. The correct template mass is on top (example 3), 1/10th the recommended template mass (example 4a) is in the middle, and 1/100th the recommended template mass (example 4b) is on the bottom. Two regions of the electropherogram are displayed: position ~210 on the left and the end of the sequence on the right. The average raw signal intensities are also displayed for each example.

In the examples above you can see that a moderate deviation from the recommended template mass for PCR products generates acceptable results (example 4a). However, providing a very small amount of PCR product results in sequencing failure (example 4b). See pages 13-15 for more details on each of these examples.

Example 5: 5X recommended template (plasmid)

The template was added at 5X the recommendation. The primer was added at the correct concentration. The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

Template Mass	Number of Primers Added	Volume of 10µM Primer	Total Volume	File Name
5000 ng	1	3 µl	12 µl	5_5X_template_plasmid.ab1

The quality of this sequence is still good despite the template being at a greater mass than is recommended.

Sequence Annotation and Quality

The base calls in blue are high quality with only one base being called. Medium and low-quality values become more frequent around base 850 (yellow and red bases). The quality of this sequence is high, like example 1 (correct template). But, the usable sequence may be slightly shorter.

1	GGGGACATAC	TCTATAGG <mark>GG</mark>	CGATTCGAGC	TCGGTACCCG	GGG <mark>AT</mark> CCTCT	AGAGTCGACC	TGCAGGCATG	70
71	CAAGCTTGAG	TATTCTATAG	TGTCACCTAA	ATAGCTTGGC	GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	140
141	AAATTGTTAT	CCGCTCACAA	TTCCACACAA	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	210
211	TAATGAGTGA	GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT	280
281	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	GGGTTTGCGT	ATTGGGCGCT	CTTCCGCTTC	350
351	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	GAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	420
421	ATACGGTTAT	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	490
491	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	560
561	TCGACGCTCA	agtcaga <mark>g</mark> gt	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	CCCTGGAAGC	630
631	TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA	700
701	GCGTGGCGCT	TTCTCATAGC	TCACGCTGTA	GTATCTCAG	TTCGG <mark>T</mark> GTAG	GTCGTTCGCT	CC <mark>A</mark> AGCTGGG	770
771	CTG <mark>T</mark> GTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	TTATCCGGTA	actatcg <mark>t</mark> ct	tga <mark>g</mark> tcc <mark>a</mark> ac	840
841	CCGGTAAGA <mark>C</mark>	acgacttatc	gcc <mark>a</mark> ctggca	gcagcc <mark>a</mark> ctg	G <mark>TAACAGG</mark> AT	TA <mark>G</mark> CA <mark>G</mark> AGCG	a <mark>g</mark> gtatgt <mark>a</mark> g	910
911	G CGG <mark>T</mark> GCTAC	AGAGTTCTTG	AAGTGGTGGC	CTAACTACGG	CTACACTAGG	AGACAG <mark>T</mark> ATT	TGGTATCTGC	980
981	<mark>GC</mark> TCTG <mark>CT</mark> GA	AGCCAGTTAC	CTTCGGAAAA	AGAGT <mark>T</mark> G <mark>G</mark> GT	AGCTCTGATC	C <mark>GG</mark> CAACAAC	CACG <mark>CTGG</mark> TA	1050
1051	GCG <mark>GGT</mark> G <mark>GTT</mark>	TTTTTT <mark>TGT</mark> T	TGCAGCAGCA	GATACGGCG	AG <mark>AA</mark> AAAAGG	A <mark>T</mark> CCT <mark>C</mark> AAG <mark>A</mark>	AGA <mark>T</mark> CCTTGA	1120
1121	TCT <mark>TTT</mark> TCTA	C <mark>GGG</mark> GTCTGA	CGCCTCAGTG	GACGAAAAC <mark>T</mark>	CCACGTTAAG	<mark>g</mark> gaa <mark>t</mark> tgtc	atgga <mark>a</mark> atat	1190
1191	CAAA <mark>AA</mark> CGAA	TCTCACTAGA	TCT <mark>TT</mark> AATA	AAATGAAGTI	CATCATCTAG	TATTA <mark>TG</mark> AGT	AACTTGACTG	1260
1261	ACGCTACCAT	GC <mark>T</mark> ATCATTG	AGACGTATCA	CAGCGA				1296
				Pure Base OV		Mixed Base (NA CONTRACTOR OF	
				High M	edium Low	High	Medium Lo	w
					2011	• • • • • •		

Signal Intensity

The Average Raw Signal Intensities are in the acceptable range.

A(1818), C(2384), G(890), T(2914)

Example 6: 5X recommended template (PCR product)

The template was added at 5X the recommendation. The primer was added at the correct concentration. The template source is a 408 bp double stranded PCR product that was purified with ExoSAP-it.

Template Mass	Number of Primers Added	Volume of 10µM Primer	Total Volume	File Name
75 ng	1	3 µl	12 µl	6_5X_template_PCR_product.ab1

The quality of this sequence is poor.

Position 205

The criteria that make this a poorquality sequence are:

- Quality values are low ' throughout the read.
- Each position has multiple peaks and/or there is a lot of background noise.

End of sequence

Bases are no longer called after position 559, however, this is beyond the expected length of the PCR product.

Quality values continue to be poor through the entire read and multiple peaks/noise are present at most, if not all, positions.

Sequence Annotation and Quality

This sequence has mostly medium- to low-quality base calls. This is a failed sequence and cannot be used.

1	AGCAAATTTT	TTTTTGTTTG	GGGTTAACCC	T <mark>C</mark> AAAGTCCT	TCGTCAAAAT	ATATAACAAC	T <mark>G</mark> TCATCGAG	70
71	TT <mark>CTT</mark> ATATT	TCCTACAAT <mark>G</mark>	CG <mark>A</mark> AAT <mark>AGG</mark> C	AG <mark>ACT</mark> TATAC	ATC <mark>CA</mark> GCTCC	T <mark>GGT</mark> GTGCCT	gaa <mark>gcatt</mark> ga	140
141	T <mark>A</mark> CAAG <mark>A</mark> GAT	GTTCCCCCAT	AACCAGACAG	CATCGAG <mark>GGA</mark>	AGGTCTT <mark>G</mark> GC	CTCTTCATCC	ACCAGAAGCT	210
211	CGTT <mark>A</mark> AAACT	ATG <mark>A</mark> G <mark>TG</mark> GAA	A <mark>TG</mark> TGCTCTA	CC <mark>TTC</mark> GAGAC	gctg <mark>aaa</mark> aat	CATCCTTTAT	TATCCTAATT	280
281	GA <mark>G</mark> TTACCCT	TG <mark>GTTC</mark> ATAA	CTGGGG <mark>A</mark> AGC	GTTTG <mark>A</mark> ATAC	CAGGAC <mark>AT</mark> CA	CGA <mark>TTC</mark> TCAC	TTGGCCGCCG	350
351	TC <mark>CTTTG</mark> GT <mark>A</mark>	AGTAT <mark>TT</mark> GGG	ACCAATGTTC	T <mark>GA</mark> TTAGAT <mark>T</mark>	TAATC <mark>TACC</mark> A	GCATCTTTTT	CTATTTTTT	420
421	TTTATCTCCG	CCACTTGCTT	ggaatga <mark>aa</mark> a	ATGAAGCTAT	tgtta <mark>aag</mark> ac	TGTTTT <mark>G</mark> ACT	CTTCAAG <mark>A</mark> TG	490
491	A <mark>CAAAAA</mark> TAC	CAAA <mark>T</mark> TACTC	CTGCTGTACT	GCG <mark>G</mark> AGGAT	CC <mark>TAGG</mark> AGAG	T <mark>GA</mark> TGACTGT	CTC <mark>T</mark> GTATC	559
			Pure Base O High	QV Medium	Mixed Bas Low High	e QV Medium	Low	

Signal Intensity is below the acceptable range.

A(57),C(60),G(42),T(77)

<u>Summary</u>

Sequence is poor quality and should not be used.

To improve results, quantify sample with fluorometric method, such as Qubit. Submit fresh sample using recommended mass. Note that the NanoDrop is not an method accurate for quantifying nucleic acids.

Example 7a: 1/10th primer concentration but correct template

The primer was diluted to 1/10th the recommended concentration. The template was added at the correct mass. The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

The quality of the sequence decreases earlier in the read than in example 1. At position 795, the signal intensity has decreased, but the quality is OK. The quality really begins to drop off by position 850.

Sequence Annotation and Quality

The base calls in blue are high quality bases with only one base being called. The sequence quality begins to drop slightly earlier than in example 1.

1	<mark>g</mark> ggggctac	TACTATAGGG	CGATTCGAGC	TCGGTACCCG	ggg <mark>at</mark> cctct	agagtcg <mark>a</mark> cc	TGCAGGCATG	70
71	CAAGCTTGAG	TATTCTATAG	TGTCACCTAA	ATAGCTTGGC	GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	140
141	AAATTGTTAT	CCGCTCACAA	TTCCACACAA	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	210
211	TAATGAGTGA	GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT	280
281	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCT	CTTCCGCTTC	350
351	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	420
421	ATACGGTTAT	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	490
491	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	560
561	TCGACGCTCA	AGTCAGAGGT	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	CCCTGGAAGC	630
631	TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA	700
701	GCGTGGCGCT	TTCTCATAGC	TCACGCTGTA	G GTATCTCAG	TTCGGTGTA <mark>G</mark>	GTCGTTCGCT	CCAAGCTGGG	770
771	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	TTATCCGGTA	ACTATCGTCT	TGAGTCCAAC	840
841	CCGGTAAGA <mark>C</mark>	ACGACTTATC	gccac <mark>t</mark> gg <mark>c</mark> a	gcagccac <mark>t</mark> g	G <mark>TAAC</mark> AGGAT	TAGCA <mark>G</mark> A <mark>G</mark> CG	AGGTATGT <mark>A</mark> G	910
911	g <mark>c</mark> gg <mark>t</mark> gctac	AGAGTTCTTG	A <mark>AG</mark> TG <mark>G</mark> TGGC	CTAACTACGG	ctac <mark>a</mark> cta <mark>g</mark> a	a <mark>gaaca</mark> gtat	TT <mark>G</mark> G <mark>GT</mark> ATCT	980
981	GC <mark>G</mark> CTC <mark>T</mark> GCT	G <mark>AAG</mark> CCAGTT	ACC <mark>TTTC</mark> GGG	AAAA <mark>AGGA</mark> GT	T <mark>GG</mark> GTAGCTC	TTG <mark>ATCC</mark> GG	CA <mark>AAC</mark> AAACC	1050
1051	ACCGCTG <mark>GG</mark> T	AGCG <mark>GTG</mark> GTT	TTTTTTT <mark>G</mark> TT	TGCA <mark>GC</mark> AGCA	G <mark>A</mark> T <mark>T</mark> ACGCCG	C <mark>AGG</mark> AAAAA	AGGAT <mark>C</mark> TC <mark>A</mark> G	1120
1121	G <mark>A</mark> AGATCCT <mark>T</mark>	TGGATCTTT	TCT <mark>ACGG</mark> GTC	T <mark>G</mark> ACCGCCCC	CAGGTGGAAC	g <mark>aa</mark> acctcca	CGGTTAGGAT	1190
1191	TTGGTCATGG	AGATAATCA <mark>A</mark>	AAAGGAATCT	CACTAGATCT	TTTA <mark>A</mark> ATAAA	TGAG <mark>TT</mark> TAAT	caatcta <mark>a</mark> ag	1260
1261	TATATATGG <mark>A</mark>	GTT <mark>AA</mark> ACCTG	CCTGA <mark>A</mark> CGTT	AACATGCC <mark>T</mark> A	AT <mark>C</mark> AATGAG <mark>G</mark>	CCACCTATCT	CAACGCGAAC	1330
1331	TT <mark>GG</mark> TTCATG	TCGGTC <mark>A</mark> TAC	AGTCTAAGAT	TTGCGT				1366
				Pure Base Q	V	Mixe	d Base QV	
				High	Medium	Low High	n Medium	Low

Signal Intensity

The Average Raw Signal Intensities are in the acceptable range.

A(513), C(663), G(550), T(668)

Summary

Sequence is acceptable, but it may be necessary to trim lower quality bases from the end of the read.

To improve results, double check primer concentration and amount that was added to sample. Then submit a fresh sample with the appropriate amount of primer.

Example 7b: 1/100th primer concentration but correct template

The primer was diluted to 1/100th the recommended concentration. The template was added at the correct mass. The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

Some background noise continues throughout the sequence and the quality drops off earlier than in example 4a (1/10th primer concentration).

Sequence Annotation and Quality

Sequence quality is poor in the first 100 bases and drops off around base 845.

1	GAAAAATCAC	GTATAGGTCT	TACTA <mark>C</mark> GAGC	TCGGT <mark>AC</mark> GG	GGGTTCCTCC	at <mark>a</mark> gtcg <mark>ac</mark> c	T <mark>GCAGGCAT</mark> G	70
71	CT <mark>AG</mark> CTTGAG	TATTCTAT <mark>AG</mark>	tgtc <mark>accta</mark> a	ATAGCTTGGC	G <mark>TAA</mark> TCATGG	TCATAGCTGT	TTCCTGTGTG	140
141	AAATTGTTAT	CCGCTCACAA	ttccacac <mark>a</mark> a	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	210
211	TAATGAGTGA	GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT	280
281	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCT	CTTCCGCTTC	350
351	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	420
421	ATACGGTTAT	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	490
491	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	560
561	TCGACGCTCA	agtcaga <mark>g</mark> gt	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	CCCTGGAAGC	630
631	TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA	700
701	GCGTGGCGCT	TTCTCATAGC	TCACGCTGTA	<mark>g</mark> gtatctcag	T <mark>T</mark> CGGTGTAG	GTCGTTCGCT	CCAAGCTGGG	770
771	CTGTGTGC <mark>A</mark> C	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	TTATC <mark>C</mark> GGTA	ACTATCGTCT	tgagtcca <mark>a</mark> c	840
841	CCGG <mark>TA</mark> AGA <mark>C</mark>	ACGACTTATC	gccactgg <mark>c</mark> a	GCAGCC <mark>A</mark> CTG	GTAAC <mark>AGGAT</mark>	T <mark>A</mark> GCAGA <mark>A</mark> GC	GA <mark>GGT</mark> ATGTA	910
911	GGC <mark>GGT</mark> GCTA	C <mark>AG</mark> AGTTCTT	GAGTGGTGGC	C <mark>TA</mark> ACT <mark>A</mark> CGG	C <mark>TAACA</mark> CTAG	AA <mark>G</mark> AACA <mark>GT</mark> A	TTT <mark>GG</mark> TTATC	980
981	T <mark>GCGC</mark> TCTGC	CTGAAGCCCA	GTTACCTTCG	g <mark>gaaaa</mark> agaa	GTTGGTTAGC	CTC <mark>T</mark> TGATC <mark>C</mark>	<mark>gggcaaacaa</mark>	1050
1051	C <mark>CCAC</mark> GCTG	ggtag <mark>cc</mark> gg <mark>g</mark>	TG <mark>G</mark> TTTTTTT	TGTTTGCAAG	C <mark>C</mark> AGCAGATT	a <mark>c</mark> gcgca <mark>a</mark> ga	AAAAA <mark>AGGA</mark> T	1120
1121	CC <mark>TC</mark> AAG <mark>A</mark> AG	atc <mark>c</mark> ctgatc	TGCT <mark>A</mark> CGG <mark>GG</mark>	TCT <mark>GA</mark> CCGCC	TCGTG <mark>G</mark> AAAC	g <mark>aaa</mark> actcaa	CGG <mark>T</mark> TAGG <mark>G</mark> G	1190
1191	AT <mark>TT</mark> GTTG <mark>G</mark> T	T <mark>C</mark> AT						1204
			Pure Base QV		Mixed Base QV			
			High Mediu	m Low	High Me	dium Low		

Signal Intensity

The average raw signal intensities are very low. Data quality may be compromised.

A(68),C(78),G(73),T(83)

Summary

Sequence can be used, but manual review of electropherogram and quality scores must be done to determine what is usable.

To improve results, double check primer concentration and amount that was added to sample. Then submit a fresh sample with the appropriate amount of primer.

Comparison & Summary: Samples with too little primer

The images below show the sequence and base call quality, the electropherogram at position 795, and the average signal intensities for comparison of a sample (plasmid) with the correct amount of primer and template (example 1), 1/10th recommended primer concentration (example 7a), and 1/100th recommended primer concentration (example 7b). The examples with too little primer still yielded acceptable results. However, manual review of the electropherogram and trimming to remove poor-quality bases at the beginning and end of the read is necessary with 1/100th the recommended primer concentration. Refer to pages 9 and 19-20 for a more detailed summary of each example.

Comparison & Summary: Samples with too much primer

We tested the effects of too much primer (10X and 40X recommended primer concentrations) with the correct template mass (plasmid). In both cases the quality of the sequence data was relatively unaffected, and the data was acceptable. The sequence and base call quality and the average signal intensities are presented below for comparison. The correct primer concentration is on top (example 1), 10X the recommended primer concentration is in the middle (example 8a), and 40X the recommended primer concentration is on the bottom (example 8b).

Example 9a: Two primers and correct template

Two primers were added, both at the recommended concentration. The template was added at the correct mass. The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

Template Mass	Number of Primers Added	Concentration and volume of primers	Total Volume	File Name
1000 ng	2	3 μl forward primer (10μM) 3 μl reverse primer (10μM)	12 µl	9a_two_primers_1X_plasmid.ab1

The quality of this sequence is poor throughout the entire read. This sequence cannot be used. The phenotype shown here is a mixed template, which means there are multiple peaks at each position.

Sequence Annotation and Quality

The base calls are almost exclusively red, which are low-quality calls. This sequence is cannot not be used.

1	GGGCATTAAT	CTATGT <mark>G</mark> ACG	TATACGAGCT	CGGG <mark>CTTG</mark> GA	T <mark>G</mark> ATCTGCTA	<mark>g</mark> actaca <mark>c</mark> ct	GAGGATC <mark>TGC</mark>	70	
71	GGCTTGAAGC	TC TATATCGT	CTATAGT <mark>G</mark> AG	CTT <mark>G</mark> ATTACA	ATCATGG <mark>G</mark> GC	CGTTGTTTCC	TGTGTGAAAT	140	
141	TG <mark>GG</mark> GACGCT	CTGATTCCAC	CCAACTTA <mark>CT</mark>	ag <mark>cc</mark> gtgcgc	ATAATCC <mark>G</mark> CC	TTTCCCGGGGG	T <mark>G</mark> CCTAATGA	210	
211	GT <mark>GA</mark> GC <mark>A</mark> AGC	CCG <mark>C</mark> ATTAA <mark>T</mark>	TGCCCTTCCC	TCACTGCCCG	CTTTCTGATC	GGGAAACGGG	CGCGGCCT <mark>G</mark> C	280	
281	T <mark>GC</mark> GTTACTG	AATCCGC GGC	G <mark>G</mark> CGGG <mark>G</mark> GGG	GAGGCGGTTT	<mark>G</mark> CGTATT <mark>G</mark> GG	CGCTCTTCCG	CTTCCTCGCT	350	
351	cactga <mark>ctc</mark> c	TTGCGCTTTC	TTCCCTTCGT	TGCTCGCAG <mark>C</mark>	GGTCTCCGGT	TTTT <mark>C</mark> CCAG <mark>G</mark>	CG <mark>G</mark> CTC <mark>T</mark> ACA	420	
421	GCTATCCCCC	CAATCAG <mark>GG</mark> G	ATCGATTTA <mark>G</mark>	a <mark>g</mark> ct <mark>a</mark> aacg <mark>g</mark>	TGACCCAACC	g <mark>cc</mark> aaaaact	TGATTAG <mark>A</mark> AC	490	
491	C <mark>G</mark> ATGGTTC <mark>G</mark>	CCGCGTGGCT	GGCGTTTTTG	CTTA <mark>AG</mark> CGCC	gc <mark>ccc</mark> cga	CG <mark>A</mark> GCA <mark>T</mark> GG <mark>A</mark>	AAA <mark>ATC</mark> GACG	560	
561	C <mark>TC</mark> AAGTCA <mark>G</mark>	GAGGTGGTGT	TCCC <mark>C</mark> GAGGG	ga ctatactc	ATACCTATCG	TTTCCCCCTG	TAATCACTCT	630	
631	CGAGGGCTCT	CCT <mark>G</mark> TTCCGA	CCCTGCCGCT	TACCAG <mark>ATA</mark> C	CTGTCCGCCT	TTCTCCCTTC	GAGCGCGCGT	700	
701	GTCGCTTTAT	CATAGCTCAC	GCTGTATTGT	atctat <mark>g</mark> ctc	GGTGTTCGTC	GTACGCATCC	AAGCC <mark>GG</mark> TAT	770	
771	GTGTCACA <mark>CG</mark>	AACATGCCGC	TCTCCCA <mark>G</mark> AA	CAA <mark>T</mark> GT <mark>GC</mark> CC	TGATGGCGCA	C <mark>TAGTTA</mark> ACC	TGAGTC <mark>CGAC</mark>	840	
841	CCCCCCCC <mark>A</mark> C	<mark>ac</mark> cacgctat	CGC <mark>CG</mark> CTGT	<mark>g</mark> cagca <mark>gc</mark> t	GCTGTGC <mark>AC</mark> C	ac <mark>gg</mark> atatac	CGCATA <mark>C</mark> G <mark>A</mark> G	910	
911	ACTATGCTAG	T <mark>G</mark> CAGCTGT <mark>C</mark>	TA <mark>CAG</mark> AGATT	CTTGCAAG <mark>TG</mark>	TCG <mark>G</mark> ACC <mark>G</mark> TA	actcac <mark>c</mark> cgc	TCACTCTACG	980	
981	AAGAACCAGC	AATACGT <mark>A</mark> TC	TGCGCCTCTG	ATGC <mark>AGC</mark> TA	G <mark>TTT</mark> ATCATT	ACG <mark>GT<mark>AAA</mark>TA</mark>	GTACAGTGGG	1050	
1051	T <mark>A</mark> TCATCGGT	GATTC <mark>CT</mark> GGC	<mark>a</mark> acatca <mark>a</mark> gc	TAGC <mark>C</mark> GCCTT	GT <mark>T</mark> CAGCG <mark>G</mark> G	AGAGTG <mark>TT</mark> GC	TCTC <mark>G</mark> TAAG <mark>C</mark>	1120	
1121	CACCTCAGTC	GAATAACGCG	CTAG <mark>AA</mark> TAAC	AA <mark>T</mark> GCAATCT	CAT <mark>G</mark> TATGCA	CTCCCA <mark>T</mark> GG <mark>A</mark>	TCC <mark>T</mark> ATTCAA	1190	
1191	CCGTGATCAG	AATGCCTTCA	TGAAACTGAA	ACATTCGCA	GTATATGATT	a <mark>t</mark> tgctacat	GTCACTTAGT	1260	
1261	TCCAACACGG	TAATCTC <mark>C</mark> CC	TCTTATAATG	C <mark>CGATTAGTC</mark>	ATAAACGTAT	TTTTCAAT <mark>C</mark> A	GACTAACGCG	1330	
1331	TGAGTTAAGG	TAACGTTGCC	TGAACCGTTG	C <mark>C</mark> GAGGCTCA	AAGCTTG <mark>G</mark> GT			1380	
				Pure	Base QV		Mixed Base Q	V	
				High	n 📃 Medium	Low	High 📃	Medium 📃	Lo

Signal Intensity

Average raw signal intensities can still be in the acceptable range even if the data is poor quality.

A(830), C(1449), G(464), T(1620)

Summary

This example demonstrates the results if two primers are added to a Sanger reaction. Similar results can be seen when primers are not cleaned from a PCR product. The quality of this sequence is very poor and cannot be used.

To achieve usable results, prepare a fresh sample and add only one primer. If sequencing is needed in both the forward and reverse directions, two reactions are necessary.

If mixed template is observed in PCR products, visualize the products on an agarose gel to confirm that only one product is present. If there are multiple products, the sample will need to be purified so that only one product remains before Sanger sequencing.

Example 9b: Two primers and correct template

Two primers were added. One at the recommended concentration and the other at 1/10th the recommended concentration. The template was added at the correct mass.

The template source is the pGEM-3Zf(+) control; a double stranded DNA plasmid that is 3,197 bp.

Template Mass	Number of Primers Added	Concentration and volume of primers	Total Volume	File Name
1000 ng	2	3 μl forward primer (10μM) 3 μl reverse primer (1μM)	12 µl	9b_two_primers_1X_0.1_plasmid.ab1

The quality of this sequence is poor, showing the phenotype of mixed template at most positions throughout the read. Mixed template means that there are multiple peaks (base calls) at a single position.

Sequence Annotation and Quality

Most of the base calls are red and yellow, which are low- and medium quality calls. **This sequence is poor quality and should not be used.**

1	TGGGGAATAC	TCTATAGG <mark>G</mark> C	<mark>g</mark> attc <mark>g</mark> agct	CGGT <mark>A</mark> CC	C <mark>C</mark> GG	gg <mark>atcctct</mark> a	ga <mark>gt</mark> c <mark>g</mark> acct	G <mark>CAGGCAT</mark> GC	70	S
71	GAGCTTGAGT	ATTCTA <mark>TAG</mark> T	g <mark>tca</mark> cctaaa	TAGCTTG	6 <mark>6</mark> CG	TAATC <mark>A</mark> TGG <mark>G</mark>	CATAGCTGTT	TCCTGTGTGA	140	
141	A <mark>ATTGTTA</mark> TC	CGCTC <mark>ACAA</mark> T	TCCACACAAC	ATACGAG	SCCG	ga <mark>ag</mark> cataaa	GTGTAAAGCC	TGGGGTGCCT	210	e
211	AATGAGTGA <mark>G</mark>	C <mark>TAA</mark> CTCACA	TTAATTGCGT	TGCGCTC	CACT	GCCCGCTTTC	C <mark>AG</mark> TCGGGAA	ACCTGTCGTG	280	
281	CCAGCTGCAT	TAATGAATC <mark>G</mark>	gc <mark>c</mark> aac <mark>g</mark> cgc	G <mark>G</mark> GGAGA	GGC	ggtttgc <mark>gt</mark> a	TTGGGCGCTC	TTC <mark>CG</mark> CTTCC	350	
351	TC <mark>GC</mark> TCACTG	actc <mark>gc</mark> tgcg	CTC <mark>GGT</mark> C <mark>G</mark> TT	CGGCTGC	C <mark>G</mark> GC	GAGCGGTATC	a <mark>gct</mark> cac <mark>tc</mark> c	AAGGCGGTAA	420	
421	TAC <mark>GGTTAT</mark> C	CACAG <mark>A</mark> ATCA	G <mark>GGGA</mark> TAACG	CAG <mark>GA</mark> AA	AG <mark>A</mark> A	CATGTGAGC <mark>A</mark>	<mark>aaag</mark> gcca <mark>g</mark> c	<mark>A</mark> AAAGGC <mark>C</mark> AG	490	
491	G <mark>A</mark> ACCGTAAA	AA <mark>GGCCG</mark> CGT	TGCTGGCGTT	TT <mark>T</mark> CCAT	ra <mark>ag</mark>	cecce <mark>ccc</mark> c	CTGA <mark>C</mark> GAGCA	тс <mark>ас</mark> ааааат	560	
561	cgac <mark>g</mark> ctcaa	GTC <mark>AG</mark> AGGTG	GCGAAACCCG	ACAG <mark>GA</mark> C	TAT:	A <mark>A</mark> AGATACCA	GGCGTTTCCC	CCTG <mark>G</mark> AAGCT	630	
631	CCC <mark>TC</mark> GTGCG	CTCTCCTCTCTT	CCGACCCTGC	CGCTTA	CCGG	A <mark>T</mark> AC <mark>CT</mark> GTCC	G <mark>CC</mark> TTT <mark>C</mark> TCC	CTTCGGGAAG	700	
701	CGTGGCGCT <mark>T</mark>	TCTCATAGCT	CAC <mark>G</mark> CTG <mark>T</mark> AT	GTA <mark>T</mark> CTC	CA <mark>G</mark> C	T <mark>CGGTG</mark> TACG	TCGTTCGCTC	C <mark>AAGGT</mark> GGGC	770	
771	T <mark>G</mark> TGTGC <mark>A</mark> CG	AACCCCCC <mark>G</mark> T	TCACT <mark>CCGA</mark> C	CGCTGCG	SC TC	TTGACGGGT <mark>A</mark>	ACTATCGTCC	TG <mark>AGTCCG</mark> AC	840	
841	CCCGCTAAG <mark>A</mark>	CACCACG <mark>TT</mark> A	TAC <mark>GCC</mark> ACTG	T <mark>G</mark> C <mark>A</mark> GCA	AGCT	TAC <mark>TG</mark> GTAA <mark>C</mark>	AC <mark>GG</mark> ATTACC	ACAGACG <mark>A</mark> GG	910	
911	TATGCTAGTG	CGGT <mark>G</mark> TC <mark>T</mark> AC	AGAGATCT <mark>T</mark> G	GAAGTG <mark>T</mark>	rtg <mark>g</mark>	gacgtatc <mark>t</mark> a	C <mark>C</mark> GGC <mark>T</mark> ACTC	aacg <mark>aaaa</mark> ac	980	
981	CGCAATAGGT	ATCGGG <mark>C</mark> GCT	CT <mark>GC</mark> TGC <mark>A</mark> GC	C <mark>AGTT</mark> TC	CCTT	CG <mark>GTAAAA</mark> AG	AAGTGAGTAA	GA <mark>T</mark> CGTTGAT	1050	
1051	C <mark>C</mark> TGGCAAAT	C <mark>AA</mark> GCTAGCC	GCTTGT <mark>T</mark> AGC	G <mark>G</mark> GAGAG	FTT3	TTCTTGTTTG	CCACTATTTT	GTA <mark>TT</mark> ATCTT	1120	
1121	TT <mark>C</mark> AG <mark>AA</mark> ATA	CA <mark>A</mark> TGCATCT	CAAG <mark>TA</mark> TGCA	TCCTAT	GATC	TTATTCTACC	GT <mark>G</mark> GATCAAG	agcc <mark>tc</mark> aatt	1190	
1191	gaaactga <mark>aa</mark>	ATC <mark>G</mark> CAGTAA	ATGGATTA <mark>T</mark> T	GCTA <mark>C</mark> AI	IGAT	A <mark>CTAGT</mark> CCAC	acgtaa <mark>t</mark> ctt	CCACC <mark>T</mark> AGAT	1260	
1261	CCTT <mark>T</mark> TAAGT	CATAATGAT <mark>T</mark>	TGTCACTCAG	TCTAACO	GGTA	GTG <mark>T</mark> ATGATT	TA <mark>A</mark> ACATTGG	CCTGG <mark>A</mark> ACCT	1330	
1331	TATCCGAGGG	CCTAATCGGT	AGCATCGAAC	TCGATGO	CTAC	ATAGCCGATA	CGAATCCTCC	TA	1392	
					Pure Ba	ase QV		Mixed Base QV	l	
					High	Medium	Low	High 🗾	Medium	Low

Signal Intensity

Average raw signal intensities can still be in the acceptable range even if the data is poor quality.

A(826), C(1333), G(465), T(1528)

<u>Summary</u>

This example demonstrates the results if two primers are added to a Sanger reaction. Similar results can be seen when primers are not cleaned from a PCR product. The quality of this sequence is very poor and cannot be used.

To achieve usable results, prepare a fresh sample and add only one primer. If sequencing is needed in both the forward and reverse directions, two reactions are necessary.

If mixed template is observed in PCR products, visualize the products on an agarose gel to confirm that only one product is present. If there are multiple products, the sample will need to be purified so that only one product remains before Sanger sequencing.

Example 10: Mixed template but correct primer

The template source is the ZymoBIOMICS Microbial Community DNA Standard (Zymo Cat# D6306), a mock community composed of genomic DNA from eight bacteria plus two fungi. Full length 16S primers (27F and 1492R) were used to amplify the 16S rRNA gene. The product was purified with ExoSAP-IT. The product size is 1465 bp.

Template Mass	Number of Primers Added	Concentration and volume of primer	Total Volume	File Name
20 ng	1	3 μl forward primer (10μM)	12 µl	10_mixed_template_PCR_product.ab1

This sequence has multiple peaks (base calls) at each position throughout the read indicating a mixed template. This sequence is poor and should not be used.

Sequence Annotation and Quality

1	TTTCCCGGGG	ATAACTGTTG	CTCATGTATG	CCTACGTGTT	GAGAATCT <mark>A</mark> A	TGGTTGTCTT	GTGTACGA <mark>G</mark> T	70
71	GGAGAGATGG	AGACTAG <mark>T</mark> GT	CT <mark>G</mark> GCACTTG	CTTGGAGGAC	GGATTTCCTC	CT <mark>GA</mark> CAGCG <mark>G</mark>	CGCTTATCAC	140
141	CGA <mark>TTAT</mark> GTT	CTG <mark>AAGAC</mark> CA	TGCAGGAGA <mark>A</mark>	CTGACGTGCC	TCCTGCCATC	ACATTTACCC	AGATG <mark>C</mark> CATT	210
211	ATC <mark>T</mark> TT <mark>T</mark> TGG	TGAT <mark>G</mark> TAACG	GGTCACC <mark>G</mark> GC	gcc <mark>a</mark> cgat <mark>g</mark> c	CTATC <mark>TG</mark> GTA	TCAAACCATG	AAAGGGCACA	280
281	CTG <mark>CAAC</mark> T <mark>G</mark> G	GAC <mark>AC</mark> GGACA	CCAC <mark>TCC</mark> TAC	a <mark>ccct<mark>g</mark>cggc</mark>	gg <mark>g</mark> agg <mark>aat</mark>	ATT <mark>G</mark> CACTCT	TCC <mark>C</mark> GCAG <mark>G</mark> C	350
351	CT <mark>GA</mark> TG <mark>C</mark> TGG	CATGCCCCCC	GCC <mark>CGA</mark> GGGT	GGCCTTAGG	TTCTACTCTA	C <mark>TT</mark> TCTTTGT	gg <mark>atgaagg</mark> a	420
421	AATAAAGT <mark>T</mark> A	A <mark>TA</mark> ACG <mark>T</mark> TGC	TG <mark>GTTGACC</mark> C	TGCCGCGAC	CTAAA <mark>C</mark> AG <mark>A</mark> A	GCTACCTCCT	AGCT <mark>ACC</mark> TGC	490
491	CCCGATACTG	CGG <mark>GAAT</mark> ACG	T <mark>A</mark> AG <mark>TG</mark> TCAA	T <mark>C</mark> GTTGTTCC	T <mark>G</mark> AATTA <mark>T</mark> TG	GGGGCAAG <mark>CG</mark>	G <mark>G</mark> CGCTCTGC	560
561	GGTT <mark>T</mark> C <mark>T</mark> TTA	TGTC <mark>TG</mark> ATGT	GAAAG <mark>CTC</mark> CC	CCTGTCAAAC	T <mark>G</mark> GATAT <mark>G</mark> AT	CCTGGAAAGC	TTGAAACTTG	630
631	T <mark>A</mark> GT <mark>GCAAAG</mark>	T <mark>A</mark> GAATTCTG	G <mark>AT</mark> GTCCACG	GT <mark>G</mark> TAACGCT	<mark>ga</mark> aatgcgta	G <mark>A</mark> TATATTGC	AG <mark>GA</mark> ACACCA	700
701	A <mark>TG</mark> CGG <mark>A</mark> CCG	CTGCTC <mark>T</mark> CT <mark>G</mark>	ac <mark>t</mark> ctgta <mark>ct</mark>	CTGACGCTGA	<mark>a</mark> ggcg <mark>c</mark> gaag	gcgct <mark>g</mark> acaa	GCCAA <mark>AG</mark> AGG	770
771	ATTCAGATAC	CTCTGG <mark>T</mark> ACT	CCACCCCCGT	TTA <mark>CACA<mark>T</mark>GA</mark>	gt <mark>g</mark> ctaagc <mark>g</mark>	T <mark>T</mark> GGGGGGTT	TCCGCCCGTA	840
841	AC <mark>TGC</mark> TGCGC	T <mark>AAC</mark> TCCTTA	CCCTCT <mark>C</mark> CAC	C <mark>TGGGGGAGTA</mark>	C <mark>G</mark> ATCGAAGG	TTG <mark>AACAT</mark> TG	AAGGAATTCC	910
911	CGGGGCT <mark>C</mark> AC	A <mark>C</mark> AACATGGG	ATC <mark>ATGTGG</mark> T	A <mark>T</mark> AA <mark>T</mark> TCGAA	ACAACG <mark>C</mark> GAG	AGC <mark>TT</mark> ACAAG	TCTTGACATC	980
981	C <mark>TTT</mark> GACATC	TCTA <mark>GA</mark> AATA	GATCTTTCC <mark>C</mark>	T <mark>T</mark> CGAGACAG	AATAG <mark>A</mark> CGGT	GCATCGTG <mark>TC</mark>	tcacct <mark>c</mark> acg	1050
1051	<mark>t</mark> ctgaa <mark>a</mark> aat	TGCTAAGTCC	GTAACACTCG	a <mark>c</mark> tctttact	TCG <mark>T</mark> TCGCTG	TAC <mark>TT</mark> G <mark>G</mark> ACC	CTATA <mark>G</mark> GCAC	1120
1121	ATCCGTGAAG	<mark>a</mark> cggtggaga	G <mark>G</mark> GGGAGAGA	CTC <mark>A</mark> TGC <mark>C</mark> TT	gcgc <mark>c</mark> ct <mark>t</mark> a	TCTCTGCTAC	C <mark>C</mark> CAGGTCCT	1190
1191	CAT <mark>G</mark> AAAG <mark>AA</mark>	A <mark>A</mark> CGGCCGCA	AACGCGCGGA	C <mark>ACAAGTCGA</mark>	AATGTTCTGC	ATTCGAT <mark>T</mark> GC	ATTGAGCTCG	1260
1261	CAGCCGAACT	GATTCCTTGA	ATCCGAGAAC	TGACTACGTA	AACCGTCTCG	CAC <mark>T</mark> GCACGC	TAGCGATCAT	1330
1331	TGACGTGATC	GCGTTCGTGA	TCGTGCA					1357
				- Pure Base OV		Mixed Ba	ise OV	
				1 Cab	Madison I.	Link I	Madium .	Law

Signal Intensity

Average raw signal intensities are in the acceptable range for this sample even though the quality is very poor.

A(497), C(449), G(370), T(455)

Summary

This example demonstrates the results if one primer is added to a Sanger reaction that contains multiple targets. In this case, the target is the 16S rRNA gene from multiple bacterial species. The quality of this sequence is very poor and cannot be used. For this example, it is not possible to use Sanger sequencing. Either short read or long read sequencing is required.

Example 11: Slippage (PCR product)

The template was added at the correct concentration. The primer was added at the correct concentration. The template source is a 510 bp double stranded PCR product that was purified with ExoSAP-it.

Software for viewing Sanger Sequencing Data

Below is a non-exhaustive list of software available for viewing Sanger Sequencing data. Some of the software is free and some is paid. The images used in this guide were captured while viewing data in Sequence Scanner 2.

- Sequence Scanner 2
- SnapGene Viewer
- 4Peaks
- Chromas
- GeneStudio
- UGENE
- Chromaseq
- Geneious
- DNASTAR Lasergene
- Sequencher
- CodonCode
- DNA Baser

File Descriptions & Where to download

File names and descriptions are in the table below. All .ab1 files presented in this guide are available to download from the Genomics Core's website at:

https://rtsf.natsci.msu.edu/genomics/technical-documents/sanger-sequencing-best-and-worst-practices.aspx

Page	File Name	Description
9	1_correct_plasmid.ab1	Correct template and primer concentration (plasmid)
10	2a_0.1_template_plasmid.ab1	1/10th template concentration and correct primer concentration (plasmid)
11	2b_0.01_template_plasmid.ab1	1/100th template concentration and correct primer concentration (plasmid)
13	3_correct_PCR_product.ab1	Correct template concentration and primer concentration (PCR product)
14	4a_0.1_template_PCR_product.ab1	1/10th template concentration and correct primer concentration (PCR product)
15	4b_0.01_template_PCR_product.ab1	1/100th template concentration and correct primer concentration (PCR product)
17	5_5X_template_plasmid.ab1	5X template concentration and correct primer concentration (plasmid)
18	6_5X_template_PCR_product.ab1	5X template concentration and correct primer concentration (PCR product)
19	7a_0.1_primer_plasmid.ab1	1/10th primer concentration and correct template concentration (plasmid)
20	7b_0.01_primer_plasmid.ab1	1/100th primer concentration and correct template concentration (plasmid)
22	8a_10X_primer_plasmid.ab1	10X primer concentration and correct template concentration (plasmid)
22	8b_40X_primer_plasmid.ab1	40X primer concentration and correct template concentration (plasmid)
23	9a_two_primers_1X_plasmid.ab1	Two primers added at the recommended concentration. The correct template concentration was used (plasmid)
24	9b_two_primers_1X_0.1_plasmid.ab1	Two primers added. One at the recommended concentration and the other at 1/10th the recommended concentration. The correct template concentration was used (plasmid)
25	10_mixed_template_PCR_product.ab1	A microbial community standard was amplified. The correct template mass and primer concentration were used.
26	11_slippage_PCR_product.ab1	This example demonstrates slippage in a PCR product. The correct template mass and primer concentration was used.

Questions? Contact the RTSF Genomics Core at gtsf@msu.edu