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Thesubject of this tutorial isprotein identificationandcharacterisationbydatabasesearchingof
MS/MSData. PeptideMass Fingerprinting is excluded because it is covered in a separate tutorial.
Practical aspects of database searching are emphasised, such as choice of sequence
database, effect of mass tolerance, and how to identify post-translational modifications.
The relationship between sensitivity and specificity is discussed, as is the challenge of using
peptide match information to infer which proteins were present in the sample.
Since these tutorials are introductory in nature, most references are to reviews, rather than
primary research papers. Some familiarity withmass spectrometry and protein chemistry is
assumed. There is an accompanying slide presentation, including speaker notes, and a
collection of web-based, practical exercises, designed to reinforce key points. This Tutorial is
part of the International Proteomics Tutorial Programme (IPTP 6).
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1. Overview

Fig. 1 illustrates a typical experimental workflow for protein
identification and characterisation using MS/MS data. The
starting point is a protein sample, which may be a single
protein or a complex mixture of proteins. An enzyme, often
trypsin, digests the proteins to peptides. In most cases, one or
more stages of chromatography are used to regulate the flow
of peptides into the mass spectrometer. Peptides are selected
one at a time using the first stage of mass analysis. Each
isolated peptide is then induced to fragment, possibly by
collision, and the second stage of mass analysis used to
capture an MS/MS spectrum.

For each MS/MS spectrum, software is used to determine
which peptide sequence in a database of protein or nucleic
acid sequences gives the best match. Each entry in the
database is digested, in silico, using the known specificity of
the enzyme, and the masses of the intact peptides calculated.
If the calculatedmass of a peptidematches that of an observed
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peptide, the masses of the expected fragment ions are
calculated and compared with the experimental values.
Some search engines also predict and compare the relative
intensities of the fragment ions [1]. Many scoring algorithms
have been devised to decide which peptide sequence best
matches a given spectrum.

Because the data in eachMS/MS spectrum correspond to an
isolated peptide, it makes no difference whether the original
sample was a single protein or a mixture. Individual peptide
sequences are identified, then the set of peptide sequences is
used to infer which proteins may have been present. Unless a
peptide is unique to one particular protein, theremay be some
ambiguity as to which protein it originated from.

There are many variations of this workflow. 1D or 2D gel
electrophoresis may be used for separation followed by a
single stage of chromatography. In Top-down proteomics
(matching MS/MS spectra of intact proteins [2]), or if the
sample was of endogenous peptides (sometimes called
peptidomics [3]), there would be no enzyme digest step.
PTP 6). Details can be found at: http://www.proteomicstutorials.org/.
0 7486 1050; fax: +44 20 7224 1344.
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Fig. 1 – A typical experimental workflow for protein identification and characterisation using MS/MS data.
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Database matching of MS/MS data is possible because
peptidemolecular ions fragment preferentially at certain points
along the backbone [4,5]. For many instruments, the major
peaks in an MS/MS spectrum are b ions, where the charge is
retained on the N-terminus, or y ions, where the charge is
retained on the C-terminus [6]. The dominant fragmentation
pathways depend on the ionisation technique, the mass
analyser, and the peptide structure. Electron transfer dissocia-
tion, for example, produces predominantly c and z ions [7].

Peptide fragmentation is rarely a clean process, and the
spectrum will often show significant peaks from side chain
cleavages and internal fragments, where the backbone has
been cleaved twice. This creates ambiguity and makes it
difficult to ‘read off’ the sequence. Worse, there may be no
recognisable fragments at all to define some parts of the
sequence. So, although de novo sequence interpretation can
be used in favourable cases [8], the only option for many MS/
MS spectra is database searching, where we settle for the best
match in a limited pool of sequences. There may be no
sequence ions from one half of the peptide, but if there is a
sequence in the database that gives a good match to the other
half, and the molecular mass fits, we accept this as the correct
sequence.
2. Sequence tag searches

The first approach to database searchingwithMS/MS datawas
the sequence tag, originally described by Mann and Wilm [9].
Whilst the quality of a typical MS/MS spectrum is not good
enough for ‘end to end’ de novo interpretation, it is often
possible to pick out a short sequence ladder, and read off three
or four residues of sequence. In a sequence homology search,
this would be worth almost nothing, since any given triplet
can be expected to occur by chance many times in even a
small database. What Mann and Wilm recognised was that a
short stretch of amino acid sequence might provide sufficient
specificity for unambiguous identification if it was combined
with the fragment ion mass values that enclose it, the peptide
mass, and the enzyme specificity.

Picking out an accurate tag is not trivial, and requires both
skill and experience (or sophisticated software). Fig. 2 shows a
promising four residue tag. Each search engine has its own
syntax for the mass and sequence information. The example
shown here is for Mascot, where the masses are entered as
observed m/z values. Searching this tag with trypsin as the
enzyme and a mass tolerance of 0.5 Da gives a match to the



Fig. 2 – An example of a sequence tag. Each search engine has its own syntax for the mass and sequence information. The
example shown here is for Mascot, where the masses are entered as observed m/z values.
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trypsin autolysis peptide LQGIVSWGSGCAQK. The peaks
defining the tag turn out to be y ions, which is why the
sequence reads from right to left.

If the tag is not called correctly, then no match will be
found. With some search engines, ambiguity is OK, as long
as it is recognised and the query is formulated correctly.
Obviously, I=L and, unless themass accuracy is high, Q=K and
F=MetOx. Software or a table of mass values can help identify
the more common ambiguities.

These days, the standard sequence tag search is essentially
obsolete. It is much easier to skip the interpretation stage and
search the MS/MS peak list directly, as will be described below.
The reason the sequence tag is still important is its so-called
‘error tolerant’ mode. This consists of relaxing the specificity,
usually by removing the peptide molecular mass constraint.
When this is done, the tag becomes disconnected from one
terminus, so that a match is possible even if there is a mass
difference to one side or the other of the tag. This is one of the
few ways of getting a database match to a peptide when there
is a truly unknown modification or a variation in the primary
amino acid sequence.

Other algorithms that combine mass and sequence infor-
mation in novel ways include OpenSea [10], MS-BLAST [11],
GutenTag [12], and MultiTag [13].
3. Searching uninterpreted MS/MS data

The more widespread approach to database searching of
MS/MS data is to skip the interpretation step and let the
search engine try to match calculated mass values directly.
This method was pioneered by John Yates and Jimmy Eng at
the University of Washington, Seattle, who used a cross
correlation algorithm to compare an experimental MS/MS
spectrum against spectra predicted from candidate peptide
sequences. Their ideas were implemented as the Sequest
program [14].

There are now many search engines on the web for
performing searches of uninterpreted MS/MS data. Fig. 3 lists
those available in late 2010 together with some of the free and
commercial packages that can be downloaded or purchased to
run locally.

Searching of uninterpreted MS/MS data is readily automat-
ed for high throughput work, and most ‘proteomics pipelines’
use this approach. A sample may generate tens or even
hundreds of thousands of MS/MS spectra, which can be
searched as a single data set. It also offers the possibility of
getting useful matches from spectra of marginal quality, from
which it would be difficult to call a reliable sequence tag. In

image of Fig.�2
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Fig. 3 – Search engines for uninterpreted MS/MS data.
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isolation, a weak match to a single spectrum might not be
worth much, but if several spectra match peptides from the
same protein, this may give a higher degree of confidence that
the protein is truly present. This is usually only practical for
small data sets, where the probability of getting multiple
peptide matches to the same protein by chance is very low.

Searches of large data sets can be slow, particularly if
searched without enzyme specificity or with many variable
modifications. It may be necessary to spread the workload
across multiple processors in a computer cluster or grid.

The remainder of this tutorial focuses on key aspects of
searching uninterpreted MS/MS data: search parameters, site
localisation of modifications, multi-pass searches to locate
unsuspected modifications and non-specific cleavage, scor-
ing, the trade-off between sensitivity and specificity, and
protein inference.
4. Search parameters

Besides the mass spectrometry data, all search engines
require additional information in the form of ‘search param-
eters’. Some try to keep the user interface simple, and ask for
few parameters, others aim for greater flexibility and accept
some additional complexity. This section looks at the more
important search parameters.

4.1. Sequence database

There are two major repositories for sequence databases, one
hosted by the National Center for Biotechnology Information
in the USA (http://www.ncbi.nlm.nih.gov/) and the other
hosted by the European Bioinformatics Institute (http://
www.ebi.ac.uk/). All search engines use the ubiquitous Fasta
format and all support searching of databases of protein
sequences. Some also support searching DNA sequences,
which may be sequences corresponding to proteins (mRNA),
expressed sequence tags (EST), or the genomic DNA sequence
for a particular organism. Nucleic Acids Research produces an
annual databases issue, containing articles describing the
major databases (http://dx.doi.org/10.1093/nar/gkp1077).

SwissProt is a high quality, curated, non-redundant protein
database. That is, it contains a consensus sequence for each
distinct protein, and known variants have been collapsed into a
single entry. This makes it relatively small, so searches are fast
and reports are concise. However, if a protein of interest is
present in the sample at a very low level, and only represented
in theMS/MSdata byoneor twospectra, there is a risk that these
critical sequences could be missing from a non-redundant
database. The alternative is a comprehensive, non-identical
database, where every known protein sequence is explicitly
represented, such as NCBInr or UniRef100. The penalty is that
the database becomes larger by a factor of approximately 20. A
searchwill take 20 times as long and protein inference becomes
more difficult.

EST databases can be very large and very redundant. They
are worth trying with high quality MS/MS data if a goodmatch
could not be found in a protein database or if studying an
organism that is notwell represented in the protein databases.

The genomes of an increasing number of organisms have
been sequenced. But, in most cases, as soon as a genome
sequence is published, the proteins corresponding to the
coding sequences are added to NCBInr and UniRef100. So, the
main motivation for searching a genomic DNA sequence
would be to findmatches to sequences from coding sequences
missed by the gene finding software. Unfortunately, the
genomes of higher organisms have an exon/intron structure,
which causes many potential matches to be lost because the
peptide sequence is broken across two exons [15].

To illustrate, Fig. 4 summarises the search results for a public
domain dataset (ABRF Proteome Informatics Research Group
Study iPRG2010). Thedata, fromhumanproteins,were searched
using Mascot against a curated protein database (IPI human),
the human sequences of the GenBank EST division, and the
human genome assembly. Search conditions were as shown.
The table shows the number of peptide matches obtained at a
1% false discovery rate (to be explained in greater detail below)
and the average score threshold used to get 1% FDR.

EST_human gets far fewer matches than IPI_human. The
main reason is that EST_human is a much larger database, by
more than a factor of 100. This means that score thresholds
are higher, so we lose all the weaker matches that had scores
between 36 and 60. There may be additional matches in
EST_human, but the net change is to lose many matches.

The human genome results are even worse. This is not
because of a higher threshold; the databases are very similar in
size. One reason is that a proportion of potential matches are
missed because they are split across exon–intron boundaries.
Based on average tryptic peptide length, approximately 20% of
matches are lost for this reason. In this particular example, the
difference is much larger than 20%. The other factor is that the
human genome is only 1.5% coding sequence, and represents a
single consensus genome. EST_human is 100% coding sequence
and represents a wide range of SNPs and variants.

To search a nucleic acid database, a utility can be used to
translate the sequences to amino acids prior to the search or
the search engine can translate automatically, in the course of
the search. Usually, this is a 6 frame translation, 3 reading
frames from the forward strand and 3 reading frames from the

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
http://dx.doi.org/10.1093/nar/gkp1077


Database Size Avg. 1% 
threshold

# matches @ 
1% FDR

IPI_human 3.66 3.5 x 10^7 residues 36 2961
EST_human 20100415 4.2 x 10^9 bases 60 1899
Human Genome 20060306 3.1 x 10^9 bases 60 1241

Fig. 4 – Results for a public domain dataset searched using Mascot against a curated protein database (IPI human), the human
sequences of the GenBank EST division, and the human genome assembly. Search conditions were as shown.
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complementary strand. This is partly because the strand and
frame are often uncertain and partly to catch frame shifts. All
organisms do not share the same genetic code. The differ-
encesmay not be great, but it is worth using the correct code if
the taxonomy is known.

4.2. Taxonomy

If a database contains taxonomy information, most search
engines can use this to restrict the search to entries for a
particular organism or taxonomic rank. This speeds up the
search because, in effect, it makes the database smaller.
Limiting the taxonomy also simplifies the result report,
because it removes homologous proteins from other species.

It isn't a good idea to specify a very narrow taxonomy in a
search. If the correct protein from the correct species is not in
the database, it can be very helpful to see a match to a protein
from a similar species. This is especially important for poorly
represented species. For example, in Swiss-Prot 2010_08, there
are 25,000 entries for rodents, all but 1500 of which are either
mouse or rat. So, even if you are studying hamster or porcupine,
choose ‘Rodentia’ or something broader, not ‘Other rodentia’.

If using a narrow taxonomy or a single organism database,
remember to include sequences from common contaminants.
Otherwise, you may get misleading matches such as human
serumalbuminwhen it should be BSA ormouse keratinwhen it
should be human.

4.3. Mass tolerance

Most search engines support separate mass tolerances for
precursors and fragments. Hybrid instruments, in particular,
may have very different accuracies for MS and MS/MS.
Precursorm/z comes frompeakpicking the (MS) survey scan.
Sometimes, the 13C peakmay be selected rather than the 12C. In
extreme cases, the 13C2 peak may be taken. This can happen
even when the underlying accuracy and resolution are very
high. Some search engines allow for this and will look at the
correct mass, plus andminus the tolerance, and also in narrow
windows 1 Da and 2 Da higher. This is preferable to opening out
the precursor mass tolerance to 1 or 2 Da.

Specifying too tight a mass tolerance is a very common
reason for failing to get a match. Unless the search engine
performs some type of re-calibration [16,17], it is mass
accuracy that matters, not precision. Making an estimate of
themass accuracy doesn't have to be a guessing game. Search
result reports usually include graphs showing the mass errors
for matched peptides as a function of mass. Search a standard
that gives many strong matches, such as a BSA digest, and
look at these error graphs. The extent of random scatter and
any systematic trend will become clear. Add on a safety
margin and this is your error estimate.

If you have very high precursor accuracy, beware of searching
a small database. The combination of low ppm mass tolerance,
tryptic cleavage specificity, and a database limited to proteins
fromasingle taxoncanmean that there is onlya single candidate
peptide sequence for many of the MS/MS spectra. It is difficult to
judge the reliability of such matches, when there are few or no
alternatives tocompareagainst. Better to searcha largerdatabase
or open out the mass tolerance so as to ensure each spectrum is
tested against a diverse range of candidate sequences.

4.4. Enzyme

If the peptides result froman enzymedigest, you need to know
what the enzyme was and select it in the search form.
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Setting the number of allowedmissed cleavage sites to zero
simulates a limit digest. If you are confident that the digest
was perfect, with no partial fragments present, this will give
maximum discrimination.

If experience shows that the digest mixtures usually
include some partials (peptides with missed cleavage sites)
you should choose a setting of 1, or maybe 2 missed cleavage
sites. Don't specify a higher number without good reason,
because each additional level of missed cleavages increases
the number of calculated peptide masses to be matched
against the experimental data. Just like mass tolerances, the
missed cleavage parameter is best set by looking at some
successful search results to see how complete the digests
actually are.

Some people like to perform searches without enzyme
specificity, then gain confidence that a match is correct if the
matched peptides are tryptic. The downside is that this makes
the search space 100 to 1000 times larger, so that many weak
matches will be lost. If there is evidence for a lot of non-specific
cleavage, which may actually be in-source fragmentation, then
a semi-specific enzymeallows one end of the peptide to be non-
specific, but not both. Only abandon enzyme specificity
completely if you have no other choice, such aswhen searching
endogenous peptides.

4.5. Peak list file format

There are a number of different file formats for peak lists. DTA
and PKL were developed for Sequest and Waters Masslynx
respectively, and are relatively simple, containing little more
than mass and intensity pairs. MGF is the Mascot Generic
Format, which also supports embedded search parameters
and meta data. mzML is the standard interchange format
controlled by the Proteomics Standards Initiative [18]. It can be
used for either raw data or peak lists and replaces both
mzData, which was mainly for peak lists, and mzXML, which
was mainly for raw data.

4.6. Modifications

Proteins and peptides can bemodified in hundreds of ways [19].
Some modifications relate to biological function, others are
artefacts of sample handling. The most comprehensive data-
bases of proteinmodifications are Unimod (http://www.unimod.
org), which focuses onmodifications relevant tomass spectrom-
etry, and RESID (http://www.ebi.ac.uk/RESID/), which concen-
trates on natural modifications, mostly post-translational.

In database searching, modifications are handled in two
ways. First, there are the quantitative modifications, usually
called fixed or static. An example would be the efficient
alkylation of cysteine. Since all cysteines are modified, this is
effectively just a change in the mass of cysteine. It carries no
penalty in terms of search speed or specificity.

In contrast, most post-translational modifications do not
apply to all instancesof a residue. For example, phosphorylation
might affect just one serine in a peptide containing many
serines. Non-quantitativemodifications, usually called variable
or differential, are expensive in the sense that they increase the
time taken for a search and reduce its specificity. This is because
thesoftwarehas topermuteoutall thepossiblearrangementsof
modified and unmodified residues that fit to the peptide
molecular mass. As more and more modifications are consid-
ered, the number of combinations and permutations increases
geometrically; a so-called combinatorial explosion. This is why
it is very important to be as sparing as possible with variable
modifications.

A third class of modifications is sometimes used for stable
isotope labels in a quantitation experiment. Some peptides
will carry a light label (or no label) and other peptideswill carry
a heavy label, but no peptide ever carries amixture of light and
heavy. To keep the search space small, this can be imple-
mented as two separate fixedmodification searches, one each
for the light and heavy labels.
5. Site analysis

For modifications that relate to biological function, the site of a
modification can be just as important as the nature of the
modification. If a peptide contains both modified and unmodi-
fied sites, identifying the presence of a modification is not the
same as localising it to a particular residue. A standard search
result reportmay list only thehighest scoring arrangement, or it
may list several arrangementswith differing scores, but leaving
interpretation to the user. Many software tools have been
developed to try and quantify site localisation, often with a
particular focusonphosphorylation:Ascore [20],MaxQuant [21],
InsPect [22], MS-Alignment [23], PTMFinder [24], PhosphoScore
[25], Debunker [26], SloMo— ETD/ECD [27],ModifiComb [28], and
Delta Score [29].
6. Multi-pass searches

Multi-pass searching is the efficient way to find less common
modifications, including point mutations in the primary
sequence, and non-specific peptides. The first pass search is a
simple search of the entire database with minimal modifica-
tions. The protein hits found in the first pass search are then
selected for an exhaustive second pass search. During this
second pass search, a long list of potential modifications is
tested serially. That is, only peptides containing a single
unsuspected modification will be matched, but this will cover
most post-translational modifications. Single residue substitu-
tions can be handled in exactly the same way asmodifications,
and the enzyme specificity will often be relaxed so as to find
matches to non-specific peptides.

Because only a handful of entries are being searched, search
time is not an issue. It is difficult to apply any kind of statistical
treatment to the results, because the entries being searched
have been pre-selected. Best to think of the matches from the
first pass search as the evidence for thepresence of theproteins.
The matches from the second pass search give increased
coverage and may give clues as to unsuspected modifications
or SNPs that merit closer investigation.

Often, there aremany possible explanations for an observed
mass difference. For example, a delta of 28 Da could be formyl or
dimethyl or ethyl or one of several amino acid substitutions,
such as Lys->Arg. The search report can give a list of
possibilities, but the researcher must use their knowledge and

http://www.mcponline.org/content/10/1/R110.000133
http://www.unimod.org
http://www.unimod.org
http://www.ebi.ac.uk/RESID/
http://www.mcponline.org/content/10/2/M110.003830
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experience to decide on the best explanation for the observed
differences.

The main limitation of multi-pass searching is that it can
only findmatches to proteins that have at least onematch to an
unmodified peptide. Not so useful when studying endogenous
peptides or very heavily modified proteins, such as histones.
Similar limitationsapply to ‘unrestricted’modification searches,
where peptide mass spectra are compared with one another,
rather than matched to database sequences [30].
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Fig. 5 – Receiver Operating Characteristic or ROC plot, which
shows the relationship between the true positive and false
positive rates as the threshold is varied.
7. Scoring

Many different ways of scoring peptide matches have been
developed. A review by Sadygov [31] classified scoring
algorithms as Descriptive (e.g. Sequest [14], Sonar [32]),
Interpretative (e.g. PeptideSearch [9], MS-Seq [33]), Stochastic
(e.g. Scope [34], Olav [35]), and Probability-based (e.g. Mascot
[36], OMSSA [37]). It is beyond the scope of this tutorial to go
into detail about individual algorithms.

For search engines that have non-statistical scoring algo-
rithms, there is the possibility to process the results with
something like PeptideProphet [38] or Percolator [39], which
converts the scores into probabilities. This makes it easier to
apply a threshold to remove unreliable matches.

Whether or not the scoring algorithm is probability-based,
database searching is a statistical process. Most MS/MS
spectra do not encode the complete peptide sequence; there
are gaps and ambiguities. Hopefully, most of the time, we are
able to report the correct match, a ‘true positive’, but not
always. If the sequence of the peptide is not in the database,
and we obtain a match below our score or significance
threshold, that is also OK, and we have a ‘true negative’. The
other two quadrants represent failure. A ‘false positive’ is
when we report a significant match to the wrong sequence. A
‘false negative’ is when we fail to report a match even though
the correct sequence is in the database. For real-life datasets,
when we cannot be certain that all the correct sequences are
present in the database, we don't know whether a failure to
get amatch to a spectrum is a true negative or a false negative.
The usual way to measure the quality of a set of search results
is with a false discovery rate, which doesn't require estimates
of true negatives or false negatives [40].

Many search engines report expect (or expectation) values,
either as scores or in addition to scores. An expect value is the
number of times youwould expect to get a score at least as high
by chance. Small expect values are good, and a match with an
expect value of 1 or more indicates a random match. You can
calculate an expect value for anon-statistical score by fitting the
tail of the score distribution to a straight line in log space [41].
Some software reports a PEP value (Posterior Error Probability),
which is similar to an expect value for valuesmuch less than 1.

Even the best scoring scheme cannot fully separate the
correct and incorrect matches. This is often illustrated in the
form of a Receiver Operating Characteristic or ROC plot, which
shows the relationship between the true positive and false
positive rates as the threshold is varied (Fig. 5). The origin is a
very high threshold, which lets nothing through. At the top
right, we have a very low threshold, that allows everything
through. Neither extreme is a useful place to be. The diagonal
represents a useless scoring algorithm, that is equally likely to
let through a false match as a true one. The solid curve shows
a useful scoring algorithm, and the more it pushes up towards
the top left corner, the better. Setting a threshold towards this
top left corner gives a high ratio of correct matches to false
matches.
8. Sensitivity and specificity

It could be argued that, a few years ago, there was too much
focus on sensitivity and not enough consideration given to
specificity, so that some of the published lists of proteins from
database searching were not as accurate as the authors might
have hoped. A growing awareness of this issue led to initiatives
from various quarters. Most notably, the Editors of Molecular
and Cellular Proteomics held a workshop in 2005 to define a set
of guidelines [42]. Similar guidelineshave beenadoptedbyother
journals and by the Proteomics Standards Initiative [43].

For large scale studies, there is a requirement to estimate
the false discovery rate. One of the most reliable ways to do
this is with a so-called target–decoy search. This is a very
simple but powerful way of validating search results. The
search is repeated, using identical search parameters, against
a database in which the sequences have been reversed or
shuffled. The number of matches from the decoy database is
an excellent estimate of the number of false positives in the
results from the target database [44].

There is a good deal of discussion in the literature about
whether the decoy sequences should be reversed or rando-
mised; whether to search a single database containing both
target and decoy sequences or separate databases. These
considerations may change the numbers in a small way, but
themost important thing is to do some type of decoy search and
estimatewhether the level of false positives is 0.1%or 1%or 10%.

Although a decoy search is an excellent validation method
for large data sets, it isn't useful when there are only a small
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number of spectra, because the numbers are too small to give
an accurate estimate. Hence, this is not a substitute for a
stable scoring scheme. You might think of it as a form of
external calibration for the scoring algorithm.

In addition to transforming non-statistical scores into
probabilities, PeptideProphet also seeks to improve sensitivity
through better discrimination. It takes information about the
matches, besides the score, and uses a machine learning
algorithm called linear discriminant analysis to learn what
distinguishes correct from incorrect matches. Examples of
additional information would be precursor mass error, num-
ber of missed cleavages, or the number of tryptic termini [38].

A more recent development has been to use the matches
from a decoy database as negative examples for a classifier.
Percolator trains amachine learning algorithm called a support
vector machine to discriminate between a sub-set of the high-
scoringmatches fromthe target database, assumedcorrect, and
the matches from the decoy database, assumed incorrect [39].
9. Protein inference

It is essential to remember that database matching of MS/MS
spectra identifies peptides, not proteins. Using the peptide
sequences to deduce which proteins were present in the
original sample is surprisingly difficult because many of the
peptide sequences in a typical search result can be assigned to
more than one protein. The guiding principal of protein
inference is to create a minimal list of proteins. That is, the
minimum number of proteins that can account for the
observed peptides. Some people call this approach the
principal of parsimony, others call it Occam's razor [45].

Imagine the very simple case where we have three peptide
matches, which can be assigned to three proteins, as
illustrated in Fig. 6. Do we have evidence for all three proteins,
or just one? By the principal of parsimony, we will report that
the sample contained protein A. Proteins B and C are classified
as sub-set proteins, and given an inferior status. This is
certainly a reasonable decision, but there is no guarantee that
it is correct. It is possible that the sample actually did contain a
mixture of proteins B and C, but not protein A. Another thing
to watch for is the possibility that peptide 2 is a very weak
match, maybe spurious. If so, then there is nothing to choose
between proteins A and B.

This ambiguity is made worse in a shotgun proteomics or
MudPIT experiment, where the proteins from a cell lysate are
digested to peptides without any prior fractionation or separa-
tion. In general, nomatter howgood thedata, therewill be some
ambiguity concerning which proteins were present in the
Peptide 1 Peptide 2 Peptide 3

Peptide 1 Peptide 3

Peptide 2

A

B

C

Fig. 6 – Three peptide matches, which can be assigned to
three proteins. Do we have evidence for all three proteins, or
just one?
sample. This can be a serious problem if someone who is not
familiar with these issues ends upwith the impression that the
search gives evidence for the presence of all of the proteins in a
family, rather than just one or two.

Protein false discovery rate is not the same as peptide false
discovery rate. It may be higher or lower, depending on the rules
for accepting a protein or protein family. It is usually advisable to
require that a protein has significant matches to more than one
distinct peptide sequence.Aproteinwithmatches to just a single
peptide sequence is commonly referred to as a ‘one-hit wonder’
and is often treated as suspect. This is actually a slight over-
simplification. In a search with a large number of spectra and a
small database, even though the peptide false discovery rate is
low, a protein can pick upmultiple falsematches by chance. One
way to guard against this is to look at the decoy search results
and ensure that your rules for accepting a protein in the target
database give no false positive proteins from the decoy.
10. Further reading

Other tutorials in this series cover related topics, in particular:

• De novo and sequence homology searching
• Protein ID by MALDI (Peptide Mass Fingerprinting)
• ID verification principles. PeptideProphet, etc.
• Proteomics databases (Data repositories).

Recent review articles that cover database searching of MS/
MS data in greater depth or give a different perspective include
those from Duncan et al. [46], Ma [47], Kumar and Mann [48],
McHugh and Arthur [49], Matthiesen [50], and Hernandez et al.
[51]. From the many text books that are available, Computa-
tional Methods for Mass Spectrometry Proteomics covers the area
systematically, and each chapter contains a good selection of
literature citations [52].
11. Practical exercises

A web-based collection of practical exercises has been
compiled to accompany this tutorial. The starting page is
http://www.ms-ms.com/exercises/exercises.html.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
doi:10.1016/j.jprot.2011.05.014.
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