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Abstract
Mass-spectrometry-based proteomics, the large-scale analysis of pro-
teins by mass spectrometry, has emerged as a new technology over the
last decade and become routine in many plant biology laboratories.
While early work consisted merely of listing proteins identified in a
given organ or under different conditions of interest, there is a grow-
ing need to apply comparative and quantitative proteomics strategies
toward gaining novel insights into functional aspects of plant proteins
and their dynamics. However, during the transition from qualitative to
quantitative protein analysis, the potential and challenges will be tightly
coupled. Several strategies for differential proteomics that involve sta-
ble isotopes or label-free comparisons and their statistical assessment
are possible, each having specific strengths and limitations. Further-
more, incomplete proteome coverage and restricted dynamic range still
impose the strongest limitations to data throughput and precise quanti-
tative analysis. This review gives an overview of the current state of the
art in differential proteomics and possible strategies in data processing.
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INTRODUCTION

Proteomics is the science of large-scale analysis
of proteins. In a general sense, it applies to any
large-scale analysis of protein mixtures, often
without a priori knowledge of the identity of
proteins in the samples. In the past decades,
mass-spectrometry (MS)-based proteomics has
emerged as a potent technology that allows the
analysis and identification of proteins in high
throughput. With the completion of genome
sequencing projects of a variety of organisms
across all kingdoms of life, the identification
of proteins based on their peptide fragmen-
tation patterns in tandem-mass spectrometric
experiments has become an almost automated

task. The success of protein mass spectrometry
(MS) has been boosted by the development
of soft protein ionization methods, such as
electrospray ionization (ESI) or matrix-assisted
laser desorption ionization (MALDI). This
achievement was acknowledged in 2002 with
the award of the Nobel Prize in chemistry
to John Fenn and Koichi Tanaka. However,
without the information derived from various
full-genome sequencing projects, and without
efficient algorithms for peptide sequence
determination from fragmentation spectra
(21, 91), proteomic experiments would be a
great deal more difficult today. Recent and
ongoing improvements of the mass analyzer
and fragmentation technology (43, 66, 128)
have further contributed to making mass-
spectrometry-based proteomics a now widely
used technology.

Until about a decade ago, proteomics
was largely a qualitative discipline. Typical
proteomic experiments resulted in lists of
proteins identified in a given tissue or protein
complex without any further information about
abundance, distributions, or stoichiometry. In
contrast, quantitative strategies have become
widely used for the analysis of gene expression
by microarrays or quantitative PCR, and in
plants especially, the power of large-scale
genomics has produced novel insights into
many aspects of development and physiology.
However, enzymatic reactions and signaling
pathways ultimately depend on the activity
of proteins. Protein amount is regulated
by protein synthesis and degradation, and
this may be independent of transcriptional
control (92). In addition, posttranslational
modifications, isoforms, and splice variants are
not captured by the mere analysis of transcript
abundances. Modern proteomic tools provide
the technical framework for the analysis of
the proteome complexity. Protein mixtures
today can routinely be characterized in terms
of proteins present in the sample, but in order
to allow biological interpretation, quantitative
analyses are necessary.

The field of quantitative mass-
spectrometry-based proteomics is still under
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fast development; new and better instrumenta-
tion is being developed almost on a yearly basis.
Most of the early developments in applications
of quantitative mass-spectrometry-based pro-
teomics were driven by research on yeast and in
mammalian cell lines (8, 9, 103). Quantitative
proteomic approaches have also helped in the
characterization of protein complexes (2, 3,
98) and in defining true interaction partners
to a given bait protein over background
proteins (8, 104). In plant physiology, though,
mass-spectrometry-based proteomics is no
longer used only as a descriptive tool. Instead,
well-designed quantitative proteomics have
been applied to various aspects of organelle
biology and growth regulation and signaling.
Encouraging pioneer studies of specific sub-
proteomes in plants have revealed candidate
proteins that are phosphorylated specifically
under different stress conditions (7, 73, 75) or
during a light–dark cycle (96). Protein abun-
dance changes were monitored in response
to heat shock (86) or during leaf senescence
(38), and protein turnover of photosynthetic
proteins was monitored using pulse-chase
labeling in combination with protein mass
spectrometry (74). Organelle proteomes were
characterized either by analysis of fractions
of separated proteins in a sucrose density
gradient (19, 20, 101), or by focused analysis
of specific purified subproteomes, such as
chloroplasts (53, 63, 89, 90, 96), or plasma
membranes and their microdomains (50, 71).
Ultimately, quantitative proteomics methods
now contribute to the framework of techniques
available to study regulatory processes in plants
in relation to the whole plant parameters, such
as growth or development (92, 94, 108).

STRATEGIES FOR
DIFFERENTIAL PROTEOMICS

Most experimental designs in quantitative
proteomics aim at the comparison of a stressed
or disturbed status to an undisturbed reference
sample. Over the last decade, several technolo-
gies and workflows have been presented that
leave the biologist with an often confusing

choice of strategies that all have particular
advantages and disadvantages within their
contexts. However, the choice of quantitation
method is less important than the practical
experience with the method resulting in good
technical reproducibility (111). In addition,
biological variation must be considered in a
sufficiently replicated experimental design, and
this in combination with cost considerations
may well influence the choice of strategy.
In proteomic experiments, sample amount
is often the limiting factor since there is no
amplification step like the polymerase chain
reaction in microarray experiments. Thus,
enrichment and purification of subproteomes
often are key steps before actual comparison
of protein abundances is carried out. Further,
the difficulty of obtaining sufficient amounts
of sample may also influence the choice
for specific quantitative strategies. Table 1
summarizes the characteristic features of the
different quantitative methods discussed below.

Gel-Based Quantitation

Two-dimensional (2D) gels were initially con-
sidered the most suitable method to visualize
the differences between protein samples de-
rived from different conditions or tissues. Com-
plex protein mixtures could be resolved effi-
ciently, and detection of differences in band
or spot intensity seemed intuitive. Today, it is
possible to visualize over 10,000 spots corre-
sponding to over 1000 proteins on single 2D
gels (29). However, in traditional 2D gel exper-
iments, protein separation and differential anal-
ysis are not coupled directly with identification
of the protein underlying a given spot. In many
cases, individual spots may still consist of more
than one protein, but this can be recognized
only if differential spots are actually excised and
analyzed by mass spectrometry (35). With the
development of peptide sequencing technology
by mass spectrometry in the mid-1990s (123),
separation and quantitative analysis by 2D gels
could be coupled with protein identification. In
this combination, 2D-gel-based quantitation is
still attractive and has been applied in the past to
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a variety of questions in plant biology, ranging
from stress response analysis (97) to character-
ization of cell types or organelles (53, 64, 89).

In quantitative studies, accurate repro-
ducibility of 2D gels is often a limitation. Per-
haps as a consequence, the major advances
in gel-based quantitation have occurred when

DIGE: difference in
gel electrophoresis

using fluorescent dyes to label different protein
samples that were then separated on the same
gel (112). This so-called DIGE technology has
improved quantitative accuracy of 2D gels sig-
nificantly (Figure 1a). The DIGE approach
has been successfully applied to study phospho-
rylation responses in plant plasma membrane

a

b

Classic 2D gel approach DIGE

Tissue

Protein

Gel

Image
analysis

Protein ID

Excision and digestion of
differential spots

Excision and
digestion of

differential spots

MS

m/z

MS

m/z

MS

m/z

MS

m/z
MS

m/z

MS

m/z

MS

m/z

MS

m/z

MS2

m/z

MS2

m/z

MS2

m/z

MS2

m/z

MS2

m/z

MS

m/z

MS

m/z

MS

m/z

Metabolic
labeling

Chemical labeling
Proteins Peptides

Synthetic
standard
peptides

Label-free
quantitation

Tissue

Protein

Peptides

Spectrum

Data

Figure 1
Overview of different strategies in quantitative proteomics. (a) Gel-based quantitative approaches. In classic
two-dimensional gel experiments, spots with differential intensities from different gels are analyzed by mass
spectrometry. The DIGE (difference in gel electrophoresis) approach allows separation of proteins from two
different samples on the same gel. (b) Mass-spectrometry-based approaches. Metabolic labeling allows very
early mixing of samples. Chemical labeling introduces a label on either protein or peptide level, and
quantification can be done on survey scans or on fragment scans. Synthetic standard peptides are spiked into
the sample at known concentrations. Label-free quantitation allows comparisons of multiple samples
analyzed in parallel.
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LC-MS/MS: liquid
chromatography
coupled tandem mass
spectrometry

Mass-to-charge ratio
(m/z): two particles
with the same m/z
move in the same path
in a vacuum when
subjected to the same
electric and magnetic
fields. Mass
spectrometers detect
not the real mass of an
ion but its m/z. The
unit of mass-to-charge
ratio is the Thomson
(Th)

Survey scan: mass
spectrometric
detection of all ions
within a selected
mass-to-charge range.
The survey scan is also
called a MS full scan

rsd: relative standard
deviation

Extracted ion
chromatogram: the
ion intensity of a given
ion integrated over the
chromatographic
timescale. Thus, this
value represents the
peak volume

Fragment ion scan:
mass spectrometric
detection of all ions
that were produced
upon fragmentation of
a peptide ion. The
fragment ion scan is
also called an MS2
scan or MS/MS scan

proteins upon brassinosteroid treatment (17)
or to compare light and dark adapted pro-
teomes of chloroplast thylakoid lumen (31).
Recent advances in using the DIGE technol-
ogy in combination with blue native gel elec-
trophoresis (rather than isoelectric focusing) as
a first-dimension separation offer new perspec-
tives and applications, especially with regard to
the comparative and structural study of protein
complexes or the assignment of complexes to
subcellular fractions (39).

Mass-Spectrometry-Based
Quantitation

Protein mass spectrometry using LC-MS/MS
is not quantitative as such becasue of different
physical and chemical properties of different
tryptic peptides. Differences in charge state,
peptide length, amino acid composition, or
posttranslational modifications result in great
differences in ion intensities for the peptides,
even when they belong to the same protein.
Thus, for accurate quantitation using ion
intensities, comparisons between different
samples can only be done based on the same
peptide mass-to-charge ratios (m/z) that were
acquired under the same general conditions
during LC-MS/MS experiments. Thus, all
mass-spectrometry-based quantitative meth-
ods are necessarily relative comparisons
between two or more samples, and compara-
tive quantitation is feasible only when careful
experimental design and suitable data analysis
strategies are employed (42). A number of
such comparative strategies have become
increasingly popular and can be categorized
as either stable-isotope-labeling approaches or
label-free approaches (Figure 1b).

Stable-isotope-labeling strategies that rely
on survey scan quantitation typically provide
relative standard deviations (rsd) below 10%
(36, 82) (Table 1). Quantitation without sta-
ble isotopes, but instead based on peak intensi-
ties or extracted ion chromatograms in separate
LC-MS/MS runs, can usually provide quantita-
tive accuracies within 30% (3). In contrast, the
quantitative precision of label-free approaches

based on spectral counting or derived indices
can be as low as 50% rsd (77).

LABEL-FREE TECHNIQUES

Differential proteomic studies employing label-
free quantitation compare two or more samples
based on the ion intensities of identical pep-
tides or based on the number of acquired spectra
for each protein. Ideally, samples for label-free
comparisons are run consecutively on the same
LC-MS/MS setup to avoid variations in ion in-
tensities due to differences in the system setup
(column properties, temperatures), and thereby
allow precise reproduction of retention times.

Label-free approaches are inexpensive; they
can be applied to any biological material; and
the proteome coverage of quantified proteins
is high because basically every protein that is
identified by one or more peptide spectra can
be quantified. In addition to these advantages,
the complexity of the sample is not increased by
the mixing of different proteomes. Label-free
methods therefore usually have a high analytical
depth and dynamic range, giving this method an
advantage when large, global protein changes
between treatments are expected. However, es-
pecially with spectrum count, the advantage of
high proteome coverage may come at the cost
of relatively poor precision (77).

Protein-Based Methods: Spectrum
Count and Derived Indices

The protein-based methods allow relative
quantitation of protein amounts within the
same sample as well as between samples, and
they are very fast and easy to perform. In ad-
dition, basically unlimited numbers of samples
can be compared. The spectrum count methods
use the number of peptide-identifying spectra
assigned to each protein as a quantitative mea-
sure (61). The rationale behind this quantita-
tion method is that more abundant peptides
and proteins are sampled more often in frag-
ment ion scans than are low abundance pep-
tides or proteins. Obviously, the outcome of
spectrum counting depends on the settings of
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data-dependent acquisition on the mass spec-
trometer. In particular, the linear range for
quantitation and the number of proteins to
be quantified are influenced by different set-
tings for dynamic exclusion (116); the opti-
mal settings will depend on sample complexity.
The most significant disadvantage of spectrum
counting is that it behaves very poorly with pro-
teins of low abundance and few spectra. The
accuracy of the spectrum count method, espe-
cially for low abundance proteins, suffers from
the fact that each spectrum is scored with the
value “1” independently of its ion intensities. To
overcome this problem, an approach has been
suggested that uses the average of the total ion
count from all fragment spectra that identify a
protein as a quantitative measure. Thereby, the
linear dynamic range for quantitation can be
vastly exceeded (4).

The empirical relationship between the
number of spectra or peptides identified for a
given protein and overall protein abundance in
the sample has been used as a basis to calcu-
late the absolute concentration of each protein
within the sample. The exponentially modified
protein abundance index (emPAI) is calculated
from the number of observed spectra for each
protein divided by the number of possibly ob-
servable peptides, a fraction that has been de-
scribed as a protein abundance index (PAI) (95).
PAI is then used as an exponent to the base 10,
resulting in an exponentially modified value,
the so-called emPAI index (46). A very simi-
lar approach was taken to calculate the abso-
lute protein expression (APEX) index (62). The
estimated protein concentrations calculated by
emPAI indices have correlated very well with
the protein concentrations calculated from en-
zymatic activities (92). The indices emPAI and
APEX are thus derived measures of absolute
protein abundance in a given sample based on
the analytical features in mass spectrometric
analysis. Their predictive value is certainly at
least as good as quantitation based on standard
protein staining.

The APEX index has been used to gener-
ate a protein abundance index of the Arabidop-
sis proteome (5) and a protein abundance map

of chloroplast proteins (131). The emPAI in-
dex has been applied to calculate protein abun-
dances of metabolic enzymes and of ribosomal
proteins in a day–night cycle (92). Spectrum
count has been used to study drought stress re-
sponse in root nodules of Medicago (58) and,
among other methods, in comparison of pro-
tein abundance in mesophyll and bundle sheath
chloroplasts (63, 64). In combination with high
mass accuracy precursor alignment, spectrum
count helped to identify variant-specific pro-
teome changes among potato varieties (41).

Peptide-Based Methods:
Ion Intensities and Protein
Correlation Profiling

Peptide-based approaches use averaged, nor-
malized ion intensities of each identified pep-
tide ion species as a basis for quantitation. The
height or volume of a peak with a given m/z is
a measure of the number of ions of that par-
ticular mass detected within a given time inter-
val. This process of determining the peak vol-
ume is referred to as ion extraction and results
in a so-called extracted ion chromatogram of
a given ion species. Such extracted ion chro-
matograms can be produced for each m/z across
all LC-MS/MS runs within an experiment, and
the resulting peak volumes can then be com-
pared quantitatively.

Due to differences in ionization efficiency
of different peptide species, only the same ion
species can be compared between different sam-
ples. This fact significantly complicates the
computational effort necessary to use total ion
abundance as a comparative measure. One ma-
jor problem in typical MS/MS experiments is
that the parent ion survey scans are interrupted
by the fragment ion scan events (MS/MS),
which results in discontinuous coverage of the
peptide ion peaks. Depending on the fragmen-
tation duty cycle time of the instrument, this
results in more or fewer data points acquired
across the elution time of each ion peak. There-
fore, for each instrument and for different sam-
ple complexities, the right balance between ac-
quisition of survey and fragment spectra has to
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be experimentally determined. While frequent
fragment ion scans (MS2) are necessary to allow
extensive peptide sequencing and identification
of as many peptides and proteins as possible in
complex mixtures, multiple sampling points of
the chromatographic peak by survey scans (MS)
are required for a robust quantitative reading of
ion intensities. Better quantitative accuracy will
inevitably come at the cost of poorer proteome
coverage, and vice versa.

Since ion intensities can be compared be-
tween two samples only if the exact same ion
species are being used, and since two differ-
ent LC-MS/MS experiments of the same com-
plex protein extract sample usually have an
overlap of approximately 60% on the peptide
level, this method may result in very poor
coverage of common ions between two sam-
ples. This problem is even more apparent if
more than two samples are being compared.
To overcome these drawbacks, a method called
protein correlation profiling has been devel-
oped that aligns the total ion chromatograms
of different samples (Figure 2a). Typically,
ion species for which fragment spectra (and
thus peptide sequence identification) have been
obtained are correlated based on their chro-
matographic retention times (Figure 2b). Us-
ing the information from the retention time
correlation, peaks that were fragmented in
only one of the samples (Figure 2c) can be
identified in the survey scan spectra of the
other samples, though no fragment spectrum
(Figure 2d ) is available. Thus, based on re-
tention time and accurate mass, extracted ion
chromatograms from both samples can be used
for quantitative comparisons (Figure 2e). This
method increases the number of proteins for
quantification by up to 40%. The main dis-
advantage of the protein correlation profil-
ing method is that the computational process
of ion chromatogram extraction, alignment of
different chromatographic profiles, and inser-
tion of respective “missing” ion chromatograms
is significantly more complicated and usually
requires a high degree of manual inspection
and verification compared to simple spectrum
counting.

With the development of modern high-
precision mass spectrometers, the label-free
quantitation has become a very appealing al-
ternative as better mass accuracy increases the
reliability of mapping peptides across samples
due to the more narrow mass-to-charge win-
dow that defines each peptide peak (41). How-
ever, good reproducibility of the retention time
values over different LC-MS/MS runs remains
crucial for precision in label-free quantitation
using peptide ion intensities.

A thorough evaluation of the different label-
free peptide-based methods revealed that if at
least four spectra per protein were used for
quantitation, sample-to-sample variation was
less than twofold and protein ratios were well
within 95% confidence limits (77). Removal
of very abundant proteins from the sample in-
creased the reproducibility and linearity (115).
In general, comparisons of spectral count meth-
ods to quantitation methods based on pep-
tide ion intensity reveal that both methods
are well suitable to distinguish protein abun-
dance changes of approximately twofold. Spec-
tral counting was able to detect more proteins
that undergo changes in protein abundance
(greater coverage), while quantitation based on
peptide ion intensities resulted in higher accu-
racy of the estimated protein ratios (77). Several
recent studies have shown that both methods
of label-free quantitation are complementary
(120), thus the choice between the two methods
may be based on the experience of the experi-
menting group (124).

Profiling methods based on ion intensity
were first applied to define the proteome of
the human centrosome (3), then extended to
carry out whole-organelle protein profiles on
mouse liver (24), and used recently to charac-
terize mouse liver peroxisomes (122). Label-
free peptide quantitation in combination with
statistical profiling methods made it possible
to define protein-protein interactions in pull-
down experiments over background proteins
(98). In plant biology, protein correlation pro-
filing has been applied to study phosphorylation
time profiles in Arabidopsis seedlings in response
to sucrose treatment (73).
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Figure 2
Protein correlation profiling. (a) Alignment of base peak chromatograms of two or more samples. (b) Pairwise correlation of retention
times of common peptide ions with MS/MS fragment spectra between two samples. For comparison of multiple samples, one sample is
the common base for pairwise comparisons. (c) Extracted ion chromatograms (XICs) from an ion with fragment spectrum (left) and
based on retention time correlation (right). The peak volumes are used for quantitation. (d ) Fragment spectrum of the peptide ion from
sample 1 used for peptide identification. (e) Survey scan ions from both samples. Abbreviation: Th, Thomson (i.e., the unit of mass-to-
charge ratio).

STABLE ISOTOPE LABELING

Stable isotope labeling approaches are based on
the fact that a peptide labeled with stable iso-
topes differs from the unlabeled peptide only in
terms of its mass but exhibits the same chemi-
cal properties during chromatography. The la-
bel can be introduced at various steps during
sample preparation. In metabolic labeling, the

label is introduced to the whole cell or organism
through the growth medium, while in chemical
labeling it is added to proteins or tryptic pep-
tides through a chemical reaction (Figure 1b).
Synthetic labeled standard peptides are added
to the extract after tryptic digest. The limita-
tion of protein quantification in complex sam-
ples by stable-isotope-based methods mainly
lies in signal interferences caused by co-eluting
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SILAC: stable isotope
labeling in cell cultures

components of similar mass. Therefore, the
most efficient way to optimize the quantita-
tive analysis is to decrease sample complexity
by increasing chromatrographic gradient times
or through biochemical fractionation prior to
LC-MS/MS analysis.

In proteomics, [15N]-labelling was first used
in bacteria to study protein phosphorylation
(76). The high-throughput quantitative pro-
tein analysis based on metabolic labeling was
established using stable-isotope-labeled essen-
tial amino acids in mammalian cell cultures
(SILAC) (81). This method has since been ap-
plied to various aspects of mammalian signaling
biology, protein-protein interactions (8, 104,
105), protein dynamics (9, 78), the effect of
micro-RNA expression on global protein levels
(106), and the interaction of small molecules
with proteins (84). SILAC also works well in
bacteria or specific yeast strains in which aux-
otrophy for the labeled amino acid has been cre-
ated (15, 33). In plants, SILAC has only yielded
label incorporation of approximately 70% (34),
which is not satisfying for many global pro-
teomics applications. The only organism of the
plant kingdom that has been efficiently SILAC
labeled using auxotrophic mutants is Chlamy-
domonas (70).

However, as autotrophic organisms all
plants can very easily be labeled metabol-
ically through feeding of labeled inorganic
compounds in the form of [15N]-nitrogen-
containing salts, as first demonstrated in NMR
studies (45). For proteomics applications, full
[15N]-labeling in multicellular organisms was
first done in Drosophila and Caenorhabditis ele-
gans by feeding the animals with [15N]-labeled
yeast or bacteria (55). The labeling of plant
cell cultures with [15N]-nitrogen for large-scale
proteomic analysis was demonstrated indepen-
dently (22, 57), and the general data analysis
workflow has been established (85).

The process of quantification in stable-
isotope methods is based on extracted ion chro-
matograms of survey scans containing the pair
of labeled (heavy) and unlabeled (light) pep-
tide isoforms (Figure 3a,b). Since the physic-
ochemical properties of the peptides do not

change due to the isotope label, heavy and light
forms usually co-elute off the chromatographic
gradient. Typically, a peak is 10 to 30 seconds
wide (250 nL min−1, 75 μm ID, 10 cm C18
column). Depending on the operating param-
eters of the mass spectrometer and instrument
type, one survey scan may be collected every 1
to 5 seconds, allowing the sampling of several
MS full scan spectra across the time course of
the eluting peak. Each of these MS spectra is a
single observation of the peptide pair, and aver-
aging the ratios determined from several such
MS spectra gives the ratio and standard devia-
tion for each peptide. There are two ways of cal-
culating an abundance ratio between heavy and
light forms based on the respective extracted
ion chromatograms. In one method, the ratio
between heavy and light forms is calculated at
each of the survey scan events across the ion
peak, and the individual ratios are then averaged
to a peptide ratio (Figure 3a). In this case, each
measured ion will have an average ratio and a
standard deviation. In the alternative method,
the ratio is formed between the peak volumes
across the total extracted ion chromatogram for
the heavy and the light form of the peptide
(Figure 3b). This method of calculation is less
affected by slight shifts in chromatographic elu-
tion between heavy and light peaks.

Due to a large number of incorporated la-
beled atoms in the peptide sequence, more iso-
baric amino acid forms are generated, lead-
ing to higher ambiguities in the sequence
matching process (72). Furthermore, isotope
clusters of [15N]-labeled peptides are broader,
and this is especially true for longer pep-
tides. Since most quantitation algorithms use
the first isotope for quantitation, the accu-
racy with which the peptides are quantified
also depends on peptide length and amino acid
composition (30). However, approaches that
take into account differences in isotope en-
velopes of heavy and light peptide isoforms
have been described (118). In general, the dy-
namic range across which accurate quantita-
tion is possible using [15N]-labeling covers one
to two orders of magnitude, depending on in-
strumentation (114). This means that changes
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Figure 3
Metabolic labeling using [15N]. (a) Extracted ion chromatogram (XIC) of co-eluting heavy and light peptide forms. Calculation of the
average peptide [15N]/[14N] ratio from the average of ratios of different survey scans across the eluting peak. (b) Extracted ion
chromatogram of co-eluting heavy and light peptide forms. Calculation of the average peptide [15N]/[14N] ratio from the ratio of peak
volumes. (c) MS survey scan at the peak apex, including light and heavy form of the peptide ion. Mass difference between heavy and
light form depends on number of nitrogen atoms in the peptide sequence. (d ). Fragment spectra of the heavy and light form of the
peptide. Note that in all cases both forms are fragmented. Although rather inexpensive and efficient to implement in plants, the labeling
strategy with [15N] has several drawbacks: The number of atoms incorporated in each tryptic peptide depends on peptide length and
amino acid composition, which makes the matching process more difficult. Usually, only those pairs of labeled and unlabeled isoforms
can be used for quantitation, for which a peptide sequence was assigned at least to one of the pairs (c). The nonfragmented heavy or light
partner must then be found according to the predicted mass difference, which depends on the number of nitrogen atoms and thus the
peptide sequence of the fragmented peak (22). In only a few cases are both heavy and light forms identified by tandem mass spectra (d ).

smaller or greater than tenfold are often beyond
the linear range and will be over- or underes-
timated. A thorough assessment of the use of
full versus partial labeling revealed that in gen-
eral both strategies are comparable with regard

to dynamic range and accuracy. While partial
labeling is more challenging with respect to au-
tomated identification of labeled and unlabeled
peptide pairs, it allowed quantification of more
peptides across the whole dynamic range (44).
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ICAT: istotope-coded
affinity tag

LC: liquid
chromatography

Fragment ion: an ion
that occurs after
fragmentation of a
peptide ion. Fragment
ions are detected
during the tandem
mass spectometry scan
(MS/MS or MS2)

Precursor ion: the
ion of a peptide that
was selected for
fragmentation in the
mass spectrometer.
Precursor ions are
detected during the
survey scan (MS)

AQUA: absolute
quantification using
synthetic standard
peptides

CHEMICAL LABELING

Chemical labeling essentially works the same
way as described for the metabolic [15N]-
labeling, except that the label is introduced to
isolated proteins or peptides by a chemical re-
action, e.g., with sulfhydryl groups or amine
groups, or through acetylation or esterification
of amino acid residues (83). The isotope label
can also be introduced to the peptide chain dur-
ing the enzymatic reaction of the tryptic diges-
tion by the addition of H2[18O] to the peptide
cleavage sites (126). Quantitation is based on
the full scans, and in contrast to [15N] labeling,
the mass shift between heavy and light peptides
is constant. However, it should be noted that
for unambiguous quantitation, the mass differ-
ence between heavy and light form should be at
least 4 Da in order to clearly distinguish the iso-
topomer clusters of the heavy and light forms
of the peptide. Since the isotopomer cluster be-
comes larger with increasing mass of the pep-
tide, small labels, e.g., [18O] introduced by a
tryptic digest in H2[18O], become limiting for
larger peptides.

A commonly used chemical isotope label is
the isotope-coded affinity tag (ICAT), which
binds to sulfhydryl groups of cysteine residues
(36). It is a useful tool to study oxidation or re-
duction status of proteins, but since cysteine is
not a very abundant amino acid, the number of
peptides that can be tagged and quantified by
sulfhydryl labels is rather low.

ISOBARIC MASS TAGS

Isobaric mass tagging (110) differs from the
strategy described above in that addition of the
mass tags initially produces labeled peptides of
the same total mass that co-elute in liquid chro-
matography. Only upon peptide fragmentation
can the different mass tags be distinguished.
As each tag adds the same total mass to a given
peptide, each peptide species produces only
a single peak during liquid chromatography,
even when two or more samples are mixed
(Figure 4a). Thus, there also will be only
one peak in the survey MS scan, and only a

single m/z will be isolated for fragmentation
(Figure 4b). The different mass tags separate
upon fragmentation (Figure 4c). The frag-
ments are in the low mass range, which usually
is not covered by typical peptide fragment ions.
The intensity ratio of the different reporter ions
is used as a quantitative readout (Figure 4d ).

Quantitation for isobaric mass tagging is
based on the fragment spectra rather than on
the survey scans. Thus, quantitative accuracy
depends on the isolation width of precursor ions
for fragmentation, since all ions isolated in that
window will contribute to fragments in the re-
porter ion mass ranges. It is also significant that
often in fragment scans only a single fragment
spectrum per peptide is available, whereas in
quantitation based on survey scans, usually sev-
eral data points across the eluting peptide peak
are sampled.

iTRAQ (99) and TMT (110) are commer-
cially available isobaric mass tags that are intro-
duced to the proteins of interest at the level of
tryptic peptides. iTRAQ has been widely used
in plant proteomics to study phosphoproteomic
responses of elicitor treatment by comparing
several time points post-treatment (48, 75).
Protein degradation in chloroplasts (100) and
developmentally induced changes in chloro-
plast proteomes (53) were studied. Chloroplast
proteomes in different cell types were com-
pared in maize (64) and Brassica (129). In an
elegant study, organelle proteomes (19) and the
proteomes of different endomembranes (101)
were defined by differential mass tagging of
sequential fractions across continuous sucrose
gradients and assignment of protein profiles to
profiles of known marker proteins.

STANDARD PEPTIDES

The use of stable-isotope-labeled standard pep-
tides was first described in 1983 (18). However,
only recently has increasing analytical through-
put on modern tandem mass spectra made
possible the large-scale use of synthetic isotope-
labeled peptides as a standard for absolute
quantification (AQUA) (26). In combination
with multiple selected reaction monitoring
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(SRM) on a triplequad mass spectrometer, such
targeted analyses of specific proteins across a
wide range of samples are very efficient. The
combination of information on retention time,
peptide mass, and fragment ion mass gives
high specificity to the particular target peptide,
and due to very low noise levels in the SRM
spectra, the linear range for quantitation is
extended up to five orders of magnitude (52).

If known concentrations of the labeled stan-
dard peptide are added to the sample, the con-
centration of the native peptide in the sample
can be calculated. However, the amount of pro-
tein in an experiment determined by AQUA
may not reflect the true expression levels of this
protein in the tissue, because sample prepara-
tion steps may lead to losses or enrichments that
are not addressed by the AQUA technique.

In plant proteomics, the standard peptides
have been used to monitor abundance changes
of different isoforms of sucrose phosphate syn-
thase in different tissues of Arabidopsis (59)
and in Medicago root nodules during drought
stress (119). Target sites for phosphorylation
in isoforms of trehalose phosphate synthase
were studied using standard peptides in in vitro
kinase assays (28).

CHALLENGES IN
DATA PROCESSING

No matter the choice of quantitative method,
quantitative proteomic data are typically very
complex and often of variable quality. The main

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 4
Isobaric mass tags. (a) Survey scan of the parent
peptide ion. (b) Extracted ion chromatogram (XIC)
of the precursor peptide ion that combines all
different tagged forms in one single mass.
(c) Fragment spectrum of the parent peptide ion that
allows sequence identification and that produces
characteristic reporter ions for quantification in the
low mass region ( gray field ). (d ) Close-up of the low
mass region of the fragment spectrum. Intensities of
the reporter ion of different mass are indicative of
the relative abundance of the peptide in the different
samples.
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Proteins in sample Identified

10–11 10–10 10–9 10–8

Quantified
Protein concentration
(mol/gFW)

Figure 5
Proteome coverage for quantitation. Of all the proteins in the sample, only a
subset is being identified in LC-MS/MS (liquid-chromatography coupled
tandem mass spectrometry) experiments. Out of the identified proteins,
another subset is suitable for quantitation. Usually, the higher abundance
proteins are covered by identification and quantification.

challenge stems from incomplete data, since
even today’s most advanced mass spectrome-
ters cannot sample and fragment every peptide
ion present in complex samples (Figure 5). As
a consequence, only a subset of peptides and
proteins present in a sample can be identified
(1). Furthermore, due to several quality issues
(see below), the fraction of identified peptides
and proteins that can actually be used for quan-
titation is even smaller (Figure 5). Therefore,
careful experimental design involving steps of
protein separation, enrichment, and purifica-
tion is essential for successful interpretation of
proteomic datasets.

From Spectra to
Quantitative Information

The workflow in quantitative approaches based
on mass spectrometry requires extraction of
quantitative information either from survey
scan or fragment spectra, as well as qualita-
tive information for peptide identification from
fragment spectra. Most important, manual val-
idation of peptide identity and quantitation is
required. During manual validation, it is pos-
sible to review sequence assignment to spectra
and to assess the quality of the quantitative data
with regard to signal-to-noise level, presence
of interfering peaks, or isotope label incorpora-
tion. In many cases, the identification process
and the quantitation process are carried out in-
dependently and are linked later at the level of
individual spectra.

While advanced algorithms for protein
identification have been available for quite some
time [Sequest (21), Mascot (91), X!Tandem
(14), Omssa (25), InsPect (109)], the develop-
ment of robust workflows and algorithms to
extract quantitative information from multi-
dimensional proteomics experiments based on
mass spectrometry has just begun (Table 2).
Generic formats such as mzData, mzXML, or
pepXML allow independent use of software
algorithms to manipulate data without compat-
ibility constraints. A thorough review of dif-
ferent freely available software for analysis of
mass spectrometry data can be found elsewhere
(68).

Intensity ratios of good-quality spectra are
usually averaged to yield abundance ratios
for a peptide, and peptide abundance ratios
are averaged to obtain protein abundance ra-
tios. The assignment of peptides to individual
proteins requires special care, since many pep-
tide sequences can match more than one pro-
tein. For accurate quantitation, it is therefore
important to consider only those peptides in
the quantitation that are unique to a particular
protein, so-called proteotypic peptides. This is
important since different protein isoforms can
be differentially regulated, and this can result
in peptide ratios of conserved peptides deviat-
ing from peptide ratios of proteotypic peptides
(83).

At the stage of experimental planning, as
well as during extraction of primary data, the
following points must be considered in relation
to the nature of the biological question asked
and the quantitation method used.

(a) In general, the quantitative accuracy
of peptide ratios is affected by several
factors. On the technical side, instrument
resolution, sensitivity, and scan speed,
as well as liquid chromatography (peak
width), have significant influence on the
quality of the quantitation. The use of
high resolution and high mass accuracy
instruments certainly will increase the
confidence in protein identification,
and it will also increase quantitative
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Table 2 Quantitation software that is free to use but may require specific input formats

Software Website Features Format requirements Reference
ASAP Ratio http://tools.proteomecenter.org/wiki/

index.php?title=Software:ASAPRatio

15N labeling, ICAT,
label-free; possibility to
self-define mass tags

mzXML, pepXML,
DTAselect

60

AYUMS www.csml.org/ayums/ SILAC Mascot output, converted
file from Waters

102

Census http://fields.scripps.edu/census/index.php 15N labeling, ICAT,
ITRAQ, label-free;
possibility to self-define
mass tags

mzXML, pepXML,
DTAselect

87

i-Tracker www.cranfield.ac.uk/health/researchareas/
bioinformatics/page6801.jsp

iTRAQ peak list files (∗.dta; ∗.mgf) 107

jTraqX http://sourceforge.net/projects/protms/ iTRAQ Mascot output 69
MaxQUANT www.maxquant.org SILAC Mascot output, instrument

raw files (Thermo)
12, 13

MRMer http://proteomics.fhcrc.org/CPL/
MRMer.html

mSRM mzXML 65

MSQuant http://msquant.sourceforge.net 15N labeling, ICAT,
label-free; possibility to
self-define mass tags

Mascot output in htm
format, instrument raw
files (Thermo, ABI,
Waters)

67

XPRESS http://tools.proteomecenter.org/wiki/
index.php?title=Software:XPRESS

ICAT, 15N labeling mzXML, pepXML,
DTAselect

37

confidence by facilitating more nar-
row isolation widths and less peak
interferences on full scans (79, 80, 130).

(b) Quantitative accuracy at the peptide
level depends on the number of data
points available across the eluting peak.
More mass spectrometry spectra provide
increased confidence in the quantitative
values obtained. This applies to all
quantitation methods based on peptide
ion intensities.

(c) Ion intensities greatly influence the
quantitative accuracy of single peptides
(Figure 6a). Peptides with high ion in-
tensities are more accurately quantified,
while peptides with low ion intensities
show a much greater variation of ratios.
Although the majority of ratios from
all quantified peptides is within the
expected range in a sample 1:1 mixture,
the outliers in a real biological experi-
ment are usually considered to be the

interesting candidates and must therefore
be carefully validated.

(d ) Further problems arise from overlap of
unrelated signals with the isotope clusters
of either member of stable-isotope pep-
tide pairs, or with peaks to be compared
in label-free protein correlation profiling.
This can lead to the contribution of the
unrelated peak to the peptide ratio. This
problem is less apparent if instruments
with high resolution can be used for quan-
titation of complex samples.

(e) Isotopic envelopes of the unlabeled and
labeled peptide forms may overlap de-
pending on the size of the peptide. This
problem depends on the mass difference
of the incorporated stable-isotope label
used. Larger peptides tend to have greater
overlap, and smaller mass differences be-
tween heavy and light labels tend to create
greater overlap. Label-free quantitation
is not affected.
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Figure 6
Quantitative accuracy in peptide ratios and protein ratios in a 1:1 mixture of labeled and unlabeled proteins. (a) Magnitude versus
amplitude plot of log2 values of ratios versus log2 values of average ion intensities. (b) Protein ratios depend on the number of peptides
contributing to the average ratio. Single peptide proteins require careful interpretation.

( f ) Chromatographic separation of the heavy
and light peptide pairs in stable-isotope-
labeling approaches can lead to distinct
ionization conditions for each member of
the peptide pair, meaning that ion inten-
sities cannot be compared from the same
survey scan spectrum. Rather, peak ar-
eas must be determined for each part-
ner separately, and the ratio of these
summed peak areas of extracted ion
chromatograms must be calculated. Iso-
baric mass tags, for which quantita-
tion is done on the fragment ion scan,
are not affected by chromatographic
separation.

( g) Using spectrum count data can lead to
zero counts of a given protein in one sam-
ple, but it might be detected in another
sample. This makes calculation of a fold
change impossible and leads to datasets
with missing values. Similarly, in stable-
isotope labeling, if only one partner of the
peptide pair is detected (i.e., only the la-
beled form or only the unlabeled form),
no ratio can be calculated and the actual
abundance level of the single partner can-
not be accurately determined.

( h) The accuracy of the protein ratio is pri-
marily dependent on good quantitation
at the peptide level but is also influenced
by the number of quantified peptides per
protein and the number of proteotypic
peptides for each protein. Protein ra-
tios calculated from more than one con-
tributing peptide are more accurate than
protein ratios based on the presence of
only one peptide (Figure 6b). Although
the majority of proteins are not affected
by this problem, the proteins quantified
based on a single peptide must be val-
idated especially thoroughly, as chances
of incorrect quantitation are considerably
high.

To overcome some of these problems,
especially in the case of stable-isotope la-
beling, reciprocal experimental designs have
been proposed that distinugish treatment ef-
fects from both labeling effects and biologi-
cal variation. Reciprocal experiments involv-
ing metabolic [15N]-labeling were first used to
identify differentially regulated candidate pro-
teins, prior to sequence assignment, through
database search (117). In addition, a detailed
statistical procedure describing identification of
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treatment-responsive proteins versus biological
variance of two proteomes has been developed
(51). Reciprocal design of [15N]-labeling exper-
iments has been implemented in phosphopro-
teomic studies of elicitor treatment (7), in defi-
nition of plant sterol-rich domains (50), and in
studies of proteome changes in leaf senescence
(38).

Statistical Analysis

Experiments involving quantitative proteomics
typically aim at either the analysis of changes in
protein abundance between a set of treated sam-
ples compared to a control condition or at the
definition of protein complexes or specific sub-
proteomes compared to background proteins.
The aim of the data analysis procedures is, in
most cases, the definition of “deviating” pro-
teins that ultimately are considered as “respon-
sive candidates” in the biological context under
investigation. When protein complexes or or-
ganelle fractions are characterized, large num-
bers of proteins with similar quantitative behav-
ior are considered as members of the same com-
plex or subproteome compared to other pro-
teins with different quantitative behavior (3, 19,
20, 24).

The first step in primary data processing is
usually normalization, which is a very critical
step in quantitative experiments. It corrects
for technical effects, such as sample mixing
errors, incomplete isotope incorporation, or
differences in ionization between independent
LC-MS/MS experiments, and thus influences
the result. Total ion counts, total number
of spectra, or the average ratios of the most
abundant proteins are often used as basis for
normalization, relying on the assumption that
the majority of proteins will remain unchanged
and can thus be used for normalization. Ideally,
in stable-isotope-labeling strategies, a control
mixture of labeled and unlabeled untreated
samples is used to determine the biological
variation of ratios and mixing errors (51).
Log-transformation of ratios is a common step
taken to harmonize the variances of ratios. The
log transformed data are subsequently used in

exploratory plots showing the average log abun-
dance on the x-axis and the log fold change
between conditions on the y-axis (Figure 6a).
Using such plots, linear and nonlinear bi-
ases in the data can be identified, and thus
normalization procedures can be benchmarked.

TREATING CONTINUOUS DATA

Relatively simple algorithms, e.g., scaling the
individual log intensity values using the global
median value or the average obtained from
a subset of proteins (55), sometimes provide
enough normalization. Other potentially more
powerful methods, such as quantile normaliza-
tion (10, 40), variance stabilization (54), or a
“spectral index” combining different features
of each data point, have been benchmarked for
label-free proteomics (56, 32).

Alternatively, data can be normalized by ap-
plying a locally weighted scatter plot smoothing
procedure (data plotted as in Figure 6a; 125),
thus efficiently removing biases that are depen-
dent on measurement values like ion intensities.
However, systematic bias coming from anal-
ysis order (56) or the data itself (49) should
be minimized by the experimental design
(42).

When the data sets are sufficiently compa-
rable after normalization, the next step is to de-
tect changes between the different conditions.
The data sets can be analyzed using statistical
tests such as the student’s t-test or the Wilcoxon
rank sum test (7). Tests taking the experimen-
tal confidence about the quantitation into ac-
count should provide more statistical power for
small sample sizes (51). In cases where there
are more than two groups to compare, it is
usually preferable to use ANOVA type analy-
ses, many of which can be performed using the
freely available R software.

TREATING DISCRETE DATA

Spectral count data is reminiscent of data aris-
ing from the serial analysis of gene expres-
sion (SAGE), and thus statistical methods and
concepts developed for SAGE can be used.
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However, proteomics-specific problems have to
be accounted for, e.g. that the number of ob-
servable peptides is not the same for all pro-
teins or that not all peptides may be detected
with the same confidence. In the case of con-
tinuous data, such factors can be accounted for
by weighting the influence of peptide ions by
their confidence (12, 60).

Methods that allow the direct assessment
of count data and have been used in the pro-
teomics field include the goodness-of-fit (G-
test), Fisher’s exact test, and the AC test, which
all performed quite similarly (127). The G-test
was extended to cover more than two condi-
tions (127). Because these tests inherently take
into account the number of spectra acquired in
total per run, no normalization is required for
this parameter.

Usually, extending beyond these count-
based statistical approaches requires normal-
ization that tries specifically to minimize the
technical effects of spectral count data. Meth-
ods that take into account the detection confi-
dence, protein length, or the number of observ-
able peptides (e.g., the emPAI and APEX values
discussed above) are suitable. Using these de-
rived indices yields values that, when contrasted
between experiments, behave quite like the data
shown in Figure 6a. The standard deviation is
dependent on the protein abundance, and this
behavior can be taken into account explicitly for
statistical analysis when using R (88).

Alternatively, more sophisticated models
that consider potentially biasing factors such
as protein length and general count abundance
can be applied (11).

GENERAL ISSUES

To date, the biggest challenge in comparative
proteomics is to account for missing values due
to incomplete proteome coverage in peptide
fragmentation. The mostly random sequencing
of peptides by the mass spectrometer results
in not every peptide being fragmented in ev-
ery sample. Especially low abundance peptides
and peptides with low ionization efficiency will
most likely be fragmented in a few out of several

samples compared, resulting in missing quanti-
tative values. However, statistical methods of-
ten require complete datasets. A common work-
around is to estimate missing values, but that
influences statistical evaluation. Eliminating in-
complete datasets from the analysis strongly
reduces the number of proteins that can be
statistically assessed. Improving peptide sepa-
ration and fractionation and optimizing chro-
matography influence the quantitative coverage
(23).

Finally, no matter how the data is generated,
modern proteomics techniques generate large
amounts of data from just a single experiment,
and thus multiple statistical tests must be per-
formed. This necessitates correcting p-values
for multiple testing using family-wise error rate
methods or false discovery rate approaches.
The latter type of correction method is often
preferable when dealing with proteomics data.

INTERPRETATION OF
THE RESULTS

When multiple measurements have been ob-
tained from biological samples, insights can be
gained by subjecting the data to more spe-
cialized analysis and visualization procedures.
Clustering the data by treatment often reveals
global trends or may help in characterizing mu-
tants. A plethora of clustering algorithms is
available; however, either hierarchical (5, 42) or
k-means clustering (98) is often used, perhaps
because many software tools support these al-
gorithms. Proteins can also be grouped by clus-
tering according to their behavior in multiple
experiments or in a time course. Often, either
the groups of proteins in a cluster or all differ-
entially expressed proteins are categorized (5,
58, 71) and statistically assessed for the enrich-
ment of biological categories. Many tools are
available to the plant community for these anal-
yses, including the GO slim categorization by
TAIR; the Classification SuperViewer (93) for
Arabidopsis; or PageMan (113), which is avail-
able for many plant species.

Commonly used tools for projecting data
into a 2D space include principal component
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analysis (47), which tries to preserve the max-
imal variance in a low-dimensional space,
and independent component analysis (58),
which attempts to identify independent com-
ponents in the dataset. The projected data
frequently provides visual separation of condi-
tions such as stressed and unstressed plants, mu-
tant genotypes, or different treatments (121).
In cases where multiple replicates from several
different plant samples are available, proteins
specific for a certain condition/tissue can be
identified by inspection of the data or by us-
ing machine learning (5). These methods help
in assessing new protein functions and aid in
their classification.

PERSPECTIVES

Although proteomics has been able for some
time to obtain a relatively complete view of
quantitative changes in subproteomes such as
organelles, the proteomics datasets are usu-
ally much smaller than microarray datasets and
tend to be biased against lower abundance
proteins. Global abundance measurements in
Saccharomyces cerevisiae have revealed a bell-
shaped distribution of proteins spanning ap-
proximately six orders of magnitude in abun-
dance (27), while only approximately three to
four orders of magnitude can be covered by
modern LC-MS/MS methods in complex sam-
ples (16). Most notably, the robust and re-
peated identification of low abundance proteins

across replicates is still far from being rou-
tine. The major limitation in quantitative pro-
teomics thus lies in the incomplete proteome
coverage between different samples, with the
result that many experiments result in datasets
with missing values.

These limitations pose significant chal-
lenges for the researcher, as only with useful
proteome fractionation and intelligent strate-
gies for enrichment of protein targets can the
coverage of the relevant proteome be maxi-
mized. On the technical side, improvement of
mass spectrometer scan speed and sensitivity, as
well as new developments in chromatographic
separation, will likely contribute to deeper pro-
teome coverage in future.

Despite these limitations, differential pro-
teomics techniques are used increasingly
throughout plant biology. Currently, most
studies employ rather straightforward pair-
wise comparisons of tissue types or treatments,
but more complex experimental designs will
emerge. The challenge in the large-scale,
quantitative proteomics experiments will lie
in the application of data-mining strategies
to plant biology. Well-designed experiments
and focused hypotheses, in combination with
high-quality mass spectrometry, are likely to
contribute significantly to our understand-
ing of protein function in plant growth and
development—both at the level of global pro-
tein profiling and in-depth, targeted protein
analysis.

SUMMARY POINTS

1. Comparative proteomic approaches involving stable-isotope-labeled quantitation have
the potential for the highest precision and lowest relative standard deviations. However,
proteome coverage may be compromised due to higher sample complexity.

2. Label-free quantitative strategies allow the comparison of a large number of samples or
conditions at rather low cost. This strategy is of particular interest for expected large dif-
ferences, since quantitative precision is lower compared with stable-isotope approaches.

3. Quantitation based on full scan techniques allows precise statistics across multiple scans
of the chromatographic peak of each peptide ion.

4. Quantitation based on fragment ions usually has low noise levels. Often, however, only
one scan per peptide is available.

www.annualreviews.org • Differential Proteomics 509

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

10
.6

1:
49

1-
51

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
11

/1
9/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV410-PP61-21 ARI 26 March 2010 19:27

5. Quantitation of a protein gains precision with the number of peptides contributing to
the quantitation. Each protein quantitation based on a single peptide requires thorough
verification.

6. Statistical treatment of the data is necessary and, despite the complexity of the data, many
tools are available for data normalization and detection of differential expression.

FUTURE ISSUES

1. A need exists for improvement of proteome coverage due to faster instrumentation and
routine implementation of peptide and protein fractionation techniques during sample
preparation. We will need to formalize quality standards for quantitative analysis within
the proteomic community.

2. Good experimental design around specific biological hypotheses will be key to our func-
tional understanding of protein function in regulatory processes of plant growth and
development.

3. Further development of statistical methods and data-mining workflows in combination
with modeling approaches are necessary for better biological interpretation of large-scale
proteomics datasets.
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