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Abstract
The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of
variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of
discovery proteomics. Although this variation impacts the identification of peptides, proteomic
identifications are far from completely random. In this study, we analyzed interlaboratory data sets
from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and
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reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS
experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the
NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix.
Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being
higher for proteins than for peptides. Most lessons from the data, however, were more subtle.
Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance
occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than
LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of
technical replicates overlapped by 35–60%, giving a range for peptide-level repeatability in these
experiments. Sample complexity did not appear to affect peptide identification repeatability, even
as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein
spectral counts revealed greater stability across technical replicates for Orbitraps, making them
superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were
those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals,
and those that resulted from proteins generating many distinct peptides. Reproducibility among
different instruments of the same type lagged behind repeatability of technical replicates on a single
instrument by several percent. These findings reinforce the importance of evaluating repeatability as
a fundamental characteristic of analytical technologies.

Introduction
Proteome analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) begins
with digestion of complex protein mixtures and separation of peptides by reverse phase liquid
chromatography. Peptide MS/MS spectra are acquired under automated instrument control
based on intensities of peptide ions. The spectra are matched to database sequences, and protein
identifications are deduced from the list of identified peptides1. The complexity of these
analyses leads to variation in the peptides and proteins identified. Minor differences in liquid
chromatography, for example, may change the elution order of peptides2 or alter which
peptides are selected for MS/MS fragmentation3. Small differences in fragmentation may
cause some spectra to be misidentified by database search software4. A major source of
variation is the sampling of complex mixtures for MS/MS fragmentation5.

Variation in inventories of identified peptides and proteins impacts the ability of these analyses
to accurately represent biological states. If individual replicates generate different inventories,
then how many replicates are needed to capture a reliable proteomic representation of the
system? If inferences are to be drawn by comparing proteomic inventories, how does variation
affect the ability of proteomic analyses to distinguish different biological states? This latter
question is particularly relevant to the problem of biomarker discovery, in which comparative
proteomic analyses of biospecimens generate biomarker candidates.

Proteomic technologies may be inherently less amenable to standardization than DNA
microarrays6. Existing literature has emphasized variation in response to changes in analytical
techniques. Fluctuations can occur in the autosampler, drawing peptides from sample vials7.
The use of multidimensional separation can introduce more variation8, 9. Both instrument
platforms10 and identification algorithms11, 12 produce variability. These contributions can be
measured in a variety of ways. Several groups have evaluated the number of replicates
necessary to observe a particular percentage of the proteins in a sample3, 9, 13. Others have
examined how the numbers of spectra matched to proteins compared among analyses14, 15.
The few comparisons across different laboratories for common samples16–18 have shown low
reproducibility. On the other hand, the factors that contribute to variation in LC-MS/MS
proteomics have never been systematically explored, nor have efforts been made to standardize
analytical proteomics platforms. Standardization of procedures or configurations of system
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components would provide a means to evaluate the contributions of system variables to overall
performance variation.

Analysis of variability in system performance entails two different measures that are often
conflated. The first is repeatability, which represents variation in repeated measurements on
the same sample and using the same system and operator19. When analyzing a particular sample
the same way on the same instrumentation, the variation in results from run-to-run can be used
to estimate the repeatability of the analytical technique. The second is reproducibility, which
is the variation observed for an analytical technique when operator, instrumentation, time, or
location is changed20. In proteomics, reproducibility could describe either the variation
between two different instruments in the same laboratory or two instruments in completely
different laboratories.

Here, we analyze the variation observed in a series of interlaboratory studies from the National
Cancer Institute-supported Clinical Proteomic Technologies Assessment for Cancer (CPTAC)
network. Overall, the six experiments for the Unbiased Discovery Working Group included
seven Thermo LTQ linear ion traps (Thermo Fisher, San Jose, CA) and five Thermo LTQ-
Orbitrap instruments at seven different institutions. Here we interrogate the data from the latter
three of the six studies, analyzing three samples that differed in complexity and concentration.
We have used these data to examine the repeatability and reproducibility for both peptide and
protein levels and to examine the impact of multiple factors on these measures.

Materials and MethodsA

Study materials and design
Three sample mixtures were used in these studies. The NCI-20 sample contained 20 human
proteins mixed in various proportions spanning 5 g/L to 5 ng/L such that 5 proteins were
routinely detected in these analyses. The Sigma UPS 1 mixture (Sigma-Aldrich, St. Louis,
MO) contained 48 human proteins in equimolar concentrations. A protein extract of
Saccharomyces cerevisiae was used to represent a highly complex biological proteome. In
some cases, samples of the yeast extract were spiked either with bovine serum albumin (Sigma)
or the Sigma UPS mixture as described below. For more detail on sample composition, see
Supplementary Information. Figure 1 illustrates each of the CPTAC Studies. In Study 1, the
coordinating laboratory at the National Institute of Standards and Technology (NIST)
distributed three replicate vials of a tryptic digest of the NCI-20 mixture as well as undigested
NCI-20 to each laboratory in two successive weeks; laboratories were to identify the contents
of the vials by internal lab protocols. While Study 1 included a wide variety of instruments, all
later studies focused on Thermo LTQ and LTQ-Orbitrap instruments. In Study 2, three vials
of digested NCI-20 were provided to laboratories, which were instructed to use Standard
Operating Procedure (SOP) version 1.0 (see Supplementary Information) to analyze the
samples. Study 3 tested revision 2.0 of the SOP on this sample list: NbYb NbYb (where ‘N’
is digested NCI-20, ‘b’ is a water blank, and ‘Y’ is digested yeast reference). Study 5 extended
upon Study 3 by revising the SOP to version 2.1 and adding a new sample: NbYbYbYb
NbZbZbZb NbYbYbYb NbZbZbZb N, where ‘Z’ is yeast spiked with bovine serum albumin.
Study 6 comprised three replicates of the following sample list: NbYbAbBbCbDbEbUbNb,
where ‘A’ through ‘E’ were increasing concentrations of Sigma UPS 1 spiked into yeast and
‘U’ was the Sigma UPS 1 alone. Because some laboratories ran the sample lists back-to-back,
the number of NCI-20 replicates varied from site to site. Study 8 sought to evaluate the yeast
lysate at two concentrations, this time without an SOP governing RPLC or instrument

ACertain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified
are necessarily the best available for the purpose.
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configuration. All files resulting from these experiments are available at the following URL:
http://cptac.tranche.proteomecommons.org/

Database search pipeline
For all studies, MS/MS spectra were converted to mzML format by the ProteoWizard
MSConvert tool21, set to centroid MS scans and to record monoisotopic m/z values for peptide
precursor ions. Spectra from yeast proteins were identified against the Saccharomyces Genome
Database orf_trans_all, downloaded March 23, 2009. These 6717 sequences were augmented
by 73 contaminant protein sequences; the full database was then doubled in size by adding the
reversed version of each sequence. Spectra from NCI20 and Sigma UPS 1 proteins were
identified against the IPI Human database, version 3.56, with porcine trypsin added and each
sequence included in both forward and reverse orientations (for a total of 153,080 protein
sequences). The MyriMatch database search algorithm version 1.5.522 matched MS/MS
spectra to peptide sequences. Semi-tryptic peptide candidates were included as possible
matches. Potential modifications included oxidation of methionines, formation of N-terminal
pyroglutamine, and carbamidomethylation of cysteines. For the LTQ, precursors were allowed
to be up to 1.25 m/z from the average mass of the peptide. For the Orbitrap, precursors were
required to be within 0.007 m/z of the peptide monoisotope, or of the monoisotope plus or
minus one neutron. Fragment ions were uniformly required to fall within 0.5 m/z of the
monoisotope. IDPicker23, 24 (April 20, 2009 build) filtered peptide matches to a 2% FDR and
applied parsimony to the protein lists. Proteins were allowed to be identified by single peptides,
though the number of distinct peptide sequences for each protein was recorded. Peptides were
considered distinct if they differed in sequence or modifications but not if they differed only
by precursor charge. IDPicker reports can be downloaded from Supplementary Information.

To measure the effect of the database search algorithm on identification, we applied X!
Tandem25 Tornado (12/01/08 build) to Orbitrap yeast data from Study 6. The software was
applied to data in mzXML format, produced with otherwise identical options as above in the
ProteoWizard MSConvert tool. The same FASTA database was employed as for MyriMatch.
X!Tandem refinement was disabled, and the software was set for semi-tryptic cleavage.
Carbamidomethylation was selected for all cysteines, with oxidation possible on methionine
residues. The software performed modification refinement only on N-termini, identifying
modified cysteine (+40 Da), glutamic acid (−18 Da), and glutamine (−17 Da) residues at this
position. The software applied a precursor threshold of 10 ppm and a fragment mass threshold
of 0.5 m/z. Identifications were converted to pepXML in Tandem2XML
(www.proteomecenter.org) and processed as above in IDPicker.

Statistical analysis
IDPicker produced five reports underlying this analysis: A) the NCI20 samples of studies 1,
2, 5, and 6; B) the Sigma UPS 1 in Study 6; C) the yeast in Study 5; D) the yeast in Study 6;
and E) the yeast in Study 8. The IDPicker sequences-per-protein table was used for protein
analysis, with each protein required to contribute two different peptide sequences in a given
LC-MS/MS replicate to be counted as detected. For peptide analyses, the IDPicker spectra-
per-peptide table reported whether or not spectra were matched to each peptide sequence across
the replicates. Most box plots and bar graphs were produced in Microsoft Excel 2007.

Scripts for the R statistical environment26 produced the values underlying the pair-wise
reproducibility graph. This script checked each peptide for joint presence in each possible pair
of LC-MS/MS runs produced on different instruments, but within the same instrument class
for a particular study. The stability of spectral counts across technical replicates was evaluated
using a multivariate hypergeometric model. The model computes the probability to match a
number of spectra from each technical replicate to a particular protein, based on the overall
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numbers of spectra identified in each replicate. For each protein, the script divides the log
probability for an even distribution of spectral counts by the log probability for the observed
spectral counts. A larger difference between these log probabilities implies greater instability
in spectral counts for that protein. These R scripts are available in Supplementary Information.

Intensity analysis
Analysis of repeatability of precursor ion intensity was performed on 5 NCI20 replicates from
each instrument in Study 5. Spectrum identifiers for peptide identifications were extracted from
IDPicker identification assemblies in XML format. Peptides were filtered to include only those
produced by NCI-20 protein sequences that matched trypsin specificity for both peptide
termini. RAW data files from each replicate were converted to MGF using
ReAdW4Mascot2.exe (v. 20080803a) (NIST). This program, derived from ReAdW.exe
(Institute for Systems Biology, Seattle, WA), has been modified to record additional parameters
including maximum precursor abundances in the TITLE elements of the files. Briefly, MS1
peak heights for a given precursor m/z are approximated from extracted ion chromatograms
using linear interpolation27. These intensities were matched to peptide identifications,
reporting the maximum intensity associated with each distinct peptide sequence. When a
peptide was identified at multiple charge states or at multiple retention times, the largest value
was selected.

Results and Discussion
Overview of CPTAC interlaboratory studies

The studies undertaken by the CPTAC network reflect the challenges of conducting
interlaboratory investigations (see Figure 1). Researchers at NIST produced a reference
mixture of 20 human proteins at varying concentrations (NCI-20). Study 1 saw the distribution
of sample to each participating laboratory; the teams were asked to identify the proteins using
their own protocols with any available instruments. Study 2 established SOP 1.0 for both LC
and MS/MS configuration and employed only Thermo LTQ and Orbitrap instruments.
Substantial changes took place between Study 2 and Study 5; a new Saccharomyces
cerevisiae (yeast) reference proteome was introduced28, the SOP version 2.0 was developed,
and a bioinformatic infrastructure was established to collect raw data files and to identify
peptides and proteins. (Study 3 tested these tools in a small-scale methodology test, whereas
Studies 4 and 7 were part of a parallel CPTAC network effort directed at liquid
chromatography-multiple reaction monitoring-mass spectrometry for targeted peptide
quantitation29; none of these studies are considered further in this work.) Study 5 analyzed the
yeast reference proteome under the new SOP. Study 6 built upon Study 5 by including spikes
of the Sigma UPS 1. The inclusion of NCI-20 in all of these studies enabled the measurement
of variability for this sample in a variety of SOP versions and experimental designs. Study 8
employed no SOP; individual laboratories used their own protocols in analyzing two sample
loads of the yeast lysate. The same quantity of yeast was analyzed in Studies 5, 6 and 8, with
an additional 5x (high load) sample analyzed in Study 8. Study 5 produced six replicates of
the yeast, whereas the other studies generated triplicates. The numbers of identified spectra
were consistent for individual instruments, but more variable among multiple instruments.
These yeast data sets, along with the quintuplicate NCI-20 analyses from Study 5 and the
triplicate Sigma UPS 1 analyses from Study 6— a total of 144 LC-MS/MS analyses from four
different LTQs and four different Orbitraps— comprise the essential corpus for our analysis
of repeatability and reproducibility.

Bioinformatic variability in Orbitrap data handling
Initially, the MS/MS spectra produced in these studies were identified by database searches
configured for low mass accuracy, because we expected significant differences in instrument
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tuning among the sites. Precursor ions were required to fall within 0.100 m/z of the values
expected from peptide sequences (MyriMatch did not support configuring precursor tolerance
in ppm units at the time of data analysis). However, we also recognized that higher mass
accuracy of Orbitrap instruments could enable tighter mass tolerances for Orbitrap data sets.
We tested MyriMatch over a range of precursor tolerances from ±0.004 to ±0.012 m/z (Figure
2A) in searches of the Orbitrap analyses of yeast from Study 6. We also included the original
±0.100 m/z setting as well as a tolerance of ±1.250 m/z, centered on the average peptide mass,
which we used for searches of LTQ data. We observed an 8–16% increase in identification
rate for the tight tolerances versus the original search settings and a 9–15% increase compared
to the ±1.250 m/z tolerance used for the LTQ. The data indicate that the high mass accuracy
of the Orbitrap produces a moderate increase in identifications, but only when precursor mass
tolerance for identification is optimized. Based on these data, we used ±0.007 m/z as the
precursor tolerance for all subsequent Orbitrap searches in this paper.

Other aspects of these instruments can also impact the effectiveness of this peptide
identification. We examined the number of peaks recorded per tandem mass spectrum from
each of the four instruments as a measure of variability remaining after SOP refinement. Panel
2B reveals significant differences in peak count interquartile range among these instruments.
These differences may reflect differences in electron multipliers, low levels of source or
instrument contamination, or instrument idiosyncrasies. Many search engines make allowance
for high resolution instruments mis-reporting the monoisotope for a precursor ion. We
conducted the MyriMatch database search with and without the option to add or subtract one
neutron from the computed precursor mass, and Panel 2C shows the extent to which this feature
improved identification rates. OrbiP@65 benefited disproportionately from this feature. Of all
twelve files, only one replicate from Orbi@86 failed to benefit from allowing the addition or
subtraction of a neutron. Differences in peak density per spectrum and monoisotope selection
can both influence peptide identification.

Many studies have shown that database search engines produce limited overlap in the peptides
they identify, and the comparison shown in Panel 2D is no exception. We repeated the database
search for these twelve files in X!Tandem as described in Materials and Methods. The number
of identifications produced by X!Tandem typically fell within 3% of the number produced by
MyriMatch, but Panel 2D shows an average overlap of only 71% between the peptide sequences
from each identification algorithm for each LC-MS/MS experiment. Oddly, the degree of
overlap appeared to be higher for the two Orbitraps at site 65 than for the others, though this
would not appear to reflect tuning similarities, given Figure 2B. Though bioinformatics
pipelines are perfectly repeatable for a given LC-MS/MS file, the choice of search engine and
configuration clearly can have a tremendous impact on the identifications produced for a given
data set.

Variability and repeatability in identified MS/MS spectra between instruments
Figure 3 depicts the numbers of MS/MS spectra mapped to yeast sequences in Studies 5, 6,
and 8. At a glance, Figure 3 suggests that strong instrument-dependent effects are observed in
the identifications. The numbers of raw MS/MS spectra produced by LTQ instruments were
approximately double the numbers of MS/MS spectra produced by Orbitraps due to the use of
the charge state exclusion feature in the Orbitraps (data not shown). The numbers of MS/MS
spectra that could be confidently matched to peptide sequences, however, were quite similar
between instrument classes. Study 6 was most suggestive of differences in numbers of
identifications between LTQs and Orbitraps (Figure 3B), and yet even for this case the p-value
(0.058) was insignificant (Student’s t-test using unpaired samples, two-sided outcomes, and
unequal variances). While the fraction of raw spectra that were identified successfully was
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much higher for Orbitraps than for LTQs, the overall numbers of identifications between
instrument classes were comparable.

The full set of samples extended beyond the yeast lysate. Table 1 shows the numbers of
identified spectra, distinct peptides, and different proteins from each instrument from each of
the studies. Spectra have been summed across all replicates for each instrument. Peptides were
distinct if they differed in sequence or chemical modifications, but they were considered
indistinct if they differed only by precursor charge. Proteins were only counted as identified if
they matched multiple distinct peptides for a particular instrument. The data demonstrate that
the NCI20 and Sigma UPS1 defined mixtures produced an order of magnitude fewer identified
spectra and distinct peptides than did the more complex yeast sample. In both of these samples,
contaminating proteins (e.g. keratins, trypsin) sometimes caused instruments to appear to have
identified more proteins from these defined mixtures than the pure samples contained.

Laboratories employing LC-MS/MS with data-dependent acquisition of MS/MS spectra expect
identification variability. If peptides from a single digestion are separated on the same HPLC
column twice, variations in retention times for peptides will alter the particular mix of peptides
eluting from that column at a given time. These differences, in turn, impact the observed
intensities for peptide ions in MS scans and influence which peptide ions will be selected for
fragmentation and tandem mass spectrum collection. Spectra for a particular peptide, in turn,
may differ significantly in signal-to-noise, causing some to be misidentified or to be scored so
poorly as to be eliminated during protein assembly. All of these factors diminish the expected
overlap in peptide identifications among replicate LC-MS/MS analyses.

Because Orbitraps targeted peptides for fragmentation on the basis of higher resolution MS
scans than did the LTQs, we asked whether Orbitrap peptide identifications were more
repeatable. Repeatability for each instrument was measured by determining the percentage of
peptide overlap between each possible pair of technical replicates. The six replicates of yeast
in Study 5 enabled fifteen such comparisons for each instrument, while the five replicates of
NCI-20 yielded ten comparisons. In Studies 6 and 8, triplicates enabled only three comparisons
per instrument (A vs. B, A vs. C, and B vs. C).

Figure 4 reports the pair-wise repeatability for peptide identifications in Studies 5, 6, and 8.
By including six replicates of yeast and five replicates of NCI-20, Study 5 yielded the most
information for comparison among technical replicates (panels 4A and 4B); Student’s t-test
produced a p-value of 0.035 in comparing LTQ to Orbitraps in Study 5 yeast peptide
repeatability (using unpaired samples, two-sided outcomes, and unequal variances). Significant
differences were not observed in Study 6 analyses of yeast peptides (p = 0.057, panel 4C); this
anomaly is traceable to the low repeatability (39%) observed for the Orbitrap at site 86, a set
of runs that also suffered from low sensitivity (Figure 3B). Yeast data from Study 8 (panels
4E and 4F) differentiated instrument classes with a p-value of 0.027. The averages of medians
for LTQ yeast peptide repeatability were 36%, 38%, and 44% in Studies 5, 6, and 8,
respectively. The corresponding values for Orbitraps were 54%, 47%, and 59%. Orbitrap
instruments achieved 9–18% greater peptide repeatability than LTQs for the yeast samples.

Identification repeatability and sample complexity
We hypothesized that increased sample complexity would decrease peptide repeatability. A
complex mixture such as yeast should yield a more diverse peptide mixture than the 48 proteins
of Sigma UPS 1, which in turn should yield a more diverse peptide mixture than the simple
NCI-20 sample.

This hypothesis can be tested by returning to Figure 4. On average, the simple NCI-20 yielded
a median 44% overlap in the peptides identified between pairs of replicates (Figure 4B). The
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Sigma UPS 1 produced almost the same average— 46% overlap for peptides (Figure 4D).
Yeast repeatability fell between the two, giving a 45% median overlap (Figure 4A). The
interquartile ranges across all instruments for these three mixtures were 39–50% for NCI-20,
42–48% for Sigma UPS 1, and 36–54% for yeast. These similar overlaps are all the more
striking when one considers the numbers of peptides observed for each sample. In total, 977
different peptide sequences (in 7755 spectra) were identified from the NCI-20 (this includes a
number from contaminant proteins), and the Sigma UPS 1 generated 1292 peptides from 9550
identified spectra. The yeast, on the other hand, produced 14,969 peptides from 130,268
identified spectra. These data demonstrate that repeatability in peptide identification is
independent of the complexity of the sample mixture and is robust against significant changes
in the numbers of identifications.

Observing these consistent but low repeatability values conveys a key message: all digestions
of protein mixtures are complex at the peptide level. Clearly NCI-20 and yeast are widely
separated on a scale of protein complexity. The peptides resulting from both digestions,
however, are still diverse enough to preclude comprehensive identification in a single LC-MS/
MS. The peptides identified from NCI-20 included numerous semi-tryptic peptides in addition
to the canonical tryptic peptides. Likewise, the concentration of a sample may change the
number of identified spectra dramatically without changing the fractional overlap between
successive replicates. Peptide identification repeatability may be a better metric for judging
the particular instruments or analytical separations than for particular samples.

While peptide repeatability was essentially unchanged in response to sample complexity,
protein repeatability appeared different for the equimolar Sigma UPS 1 and complex yeast
samples (open boxes, Figures 4C and 4D). Student’s t-test, comparing the protein
repeatabilities for yeast and Sigma UPS 1 in each instrument, produced p-values below 0.05
for the LTQ@73, LTQx@65, OrbiO@65, and OrbiP@65, but the p-values for LTQ2@95,
Orbi@86, and OrbiW@56 were all in excess of 0.10 (unpaired samples, two-sided outcomes,
and unequal variances). The wide spread of protein repeatability observed for Sigma UPS 1 in
Figure 4D prevented a strong claim that protein repeatability differed between these two
samples.

Identification repeatability and sample load
A similar result appears when high concentrations of yeast are compared to low concentrations.
Study 8 differs from the others in that each laboratory employed lab-specific protocols rather
than a common SOP. Figure 4, panels E–F display the peptide and protein repeatability for
both high and low sample loads of yeast. A five-fold increase in sample on-column increased
identified peptide counts an average of 48% per instrument, whereas protein counts increased
by an average of 35%. The median peptide repeatability, however, was essentially identical
between the low and high loads, both with median values of 53% (with an interquartile range
of 43–58% for low load and 44–58% for high load). The repeatability for proteins was always
higher than for peptides in Studies 6 and 8, but it, too, was unaffected by protein concentration.
The median value for protein repeatability at the low load was 76%, while the median for the
high load was 75%. The stability of repeatability between low and high concentrations helps
reinforce the findings for Studies 5 and 6, which used the same sample load as the low
concentration in Study 8. The 120 ng load was intended to be high enough for good
identification rates but low enough to forestall significant carryover between replicates.
Though larger numbers of identifications resulted from a higher sample load, repeatability for
peptides and proteins was unchanged by the difference in concentration.

Study 8 also provided an opportunity to examine the problem of peptide oversampling in
response to sample load. All instruments in this study were configured to employ the “Dynamic
Exclusion” feature to reduce the extent to which multiple tandem mass spectra were collected
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from each ion, though the specific configurations differed. For each replicate in each
instrument, we computed the fraction of peptides for which multiple spectra were collected.
Several possible reasons can account for the collection of multiple spectra: each precursor ion
may appear at multiple charge states, dominant peptides may produce wide chromatographic
peaks, or a different isotope of a peptide may be selected for fragmentation. In LTQs, an average
of 15.3% of peptides matched to multiple scans for each replicate of the low concentration
samples, while this statistic was 18.5% for the high concentration samples. Orbitraps were
more robust against collecting redundant identifications, with 8.8% of peptides matching to
multiple spectra in the low concentration samples and 11.5% matching to multiples in the high
concentration samples. Across all instruments, the five-fold increase in sample concentration
corresponded to 2.9% more peptides matching to multiple spectra. This difference produced
significant p-values (below 0.05) for all but one of the instruments by t-test (using unpaired
samples, allowing for two sided outcomes, and assuming unequal variances). Although more
spectra were identifiable when sample concentration increased, the redundancy of these
identifications was also higher.

Properties that influence repeatability in peptide identification
Given that peptide-level repeatability rarely approached 60%, it may seem that the appearance
of peptides across replicates is largely hit-or-miss. In fact, some peptides are far more repeatable
than others. We examined three factors for their correlation with peptide repeatability: trypsin
specificity, peptide ion intensity, and protein of origin.

Many laboratories routinely consider only fully-tryptic peptide identifications in database
searches, expecting only a minimal amount of nonspecific enzymatic cleavage and in-source
fragmentation in their samples. Allowance for semi-tryptic matches (peptides that match
trypsin specificity only at one terminus) has been shown to improve identification yield23,
30. In Study 6, semi-tryptic peptides constituted 2.2% of the identifications from yeast per
instrument and 16.9% of the peptides identified from the Sigma UPS 1 sample. In both samples,
semi-tryptic peptides were less likely to appear in multiple replicates than fully tryptic peptides
(Figure 5). In yeast, an average of 45% of the fully tryptic peptides appeared in only one
replicate, but 62% of the semi-tryptic peptides appeared in only one replicate. Comparing
percentages by instrument produced a p-value of 0.000763 by paired, two-sided t-test. A similar
trend appeared in Sigma UPS 1, with 38% of fully tryptic peptides appearing in only one
replicate and 65% of semi-tryptic peptides appearing in only one replicate (p=0.00014).
Although these two samples produced different percentages of semi-tryptic peptide
identifications, both results are evidence that semi-tryptics are less repeatable in discovery
experiments.

Precursor ion intensity drives selection for MS/MS and would be expected to correlate with
repeatability of peptide identifications. We analyzed the five replicates of NCI-20 from Study
5 to measure this relationship. Peptides from each instrument were separated into classes by
the number of replicates in which they were identified, and the maximum intensity of each
tryptic precursor ion was computed from the MS scans (see Methods). Box plots were used to
summarize the results (see Figure 6). For both the LTQs and Orbitraps, repeatability positively
correlated with precursor intensity, with peptides identified in only one replicate yielding much
lower intensities. We also observed that low intensity peptides were less reproducible across
instruments (data not shown). As expected, intense ions are more consistently identified from
MS/MS scans.

The protein of origin may also impact the repeatability of a peptide. Intuitively, a peptide that
results from the digestion of a major protein is more likely to repeat across replicates than a
peptide from a minor protein. In this analysis, the overall number of distinct peptide sequences
observed for each protein was used to segregate them into seven classes. Proteins with only
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one peptide observed comprised the most minor class. The number of peptides required for
each successive higher class was doubled, yielding classes of proteins identified by 2 peptides,
3–4 peptides, 5–8 peptides, 9–16 peptides, and 17–32 peptides. Proteins with more than 32
peptides were classed as major proteins. For each instrument in Study 5, observed yeast
peptides were split into classes by the number of replicates (out of six) in which they appeared.
The graphs in Figure 7 show how protein class corresponds to peptide repeatability.

On average, 40% of peptides appearing in all six replicates matched to the major proteins (more
than 32 distinct peptide sequences). At the other extreme, peptides appearing in only one
replicate matched to major proteins only 18% of the time. Almost none of the peptides that
were sole evidence for a protein were observed in all six replicates, but 13% of the peptides
observed in only one replicate were of this class, and only 3% of the peptides observed in two
of the six replicates were sole evidence for a protein. These data are consistent with a model
in which digestion of any protein produces peptides with both high and low probabilities of
detection; peptides for a major protein may be observed in the first analysis of the sample, but
additional peptides from the same protein will be identified in subsequent analyses. The highest
probability peptides from minor proteins must compete for detection with less detectable
peptides from major proteins.

Factors governing peptide and protein identification reproducibility
The analyses of repeatability described above establish the level of variation among technical
replicates, but they do not address the reproducibility of shotgun proteomics across multiple
laboratories and instruments. What degree of variability should be expected for analyses of the
same samples across multiple instruments? Studies 6 and 8 provide data to address this
question. Study 6 was conducted under SOP version 2.2, with a comprehensive set of specified
components, operating procedures, and instrument settings shared across laboratories and
instruments. Study 8, on the other hand, was performed with substantial variations in
chromatography (e.g. different column diameters, self-packed or monolithic columns and
various gradients) and instrument configuration (e.g. varied dynamic exclusion, injection
times, and MS/MS acquisitions). See Supplementary Information for additional detail.

Figure 8 compares the yeast peptides and proteins identified from each replicate LC-MS/MS
analysis on one instrument to all other analyses on other instruments of the same type in the
same study. The peptide median of 30% for Study 6 LTQs, for example, indicates that typically
30% of the peptides identified from a single analysis on one LTQ were also identified in
individual analyses on the other LTQs. As observed previously in repeatability, protein
reproducibility was always higher than the corresponding peptide reproducibility. Figure 8
separates the Orbitrap at site 86 from the others in Study 6 because it was a clear outlier; all
comparisons including this instrument yielded lower reproducibility than comparisons that
excluded it. The remaining three Orbitraps in Study 6 were cross-compared to produce the
Study 6 Orbitrap evaluation.

Surprisingly, the reproducibility observed with and without an SOP was unchanged. The
median reproducibility insignificantly increased by 0.8% for LTQs from Study 6 to Study 8
and by 0.4% for Orbitraps. The inter-quartile range of reproducibility increased slightly for
proteins (both LTQ and Orbitrap) and for peptides observed by Orbitraps. While the median
reproducibility was unaffected by the SOP, the range of reproducibility broadened when no
SOP was employed. This test of reproducibility is limited in scope to include only the
identifications resulting from these data; an examination of retention time reproducibility or
elution order might reveal considerably more detail about the reproducibility gains achieved
through this SOP. Because Study 8 followed the experiments incorporating the SOP, lab-
specific protocols may have been altered to incorporate some elements of the SOP, thus
diminishing any observable effect.

Tabb et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2011 February 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The comparison between LTQ and Orbitrap platforms shows two contrary phenomena. First,
the Orbitrap at site 86 shows a potential disadvantage of these instruments; an Orbitrap that is
not in top form can produce peptide identifications that do not reproduce well on other
instruments. When this instrument is excluded, however, the remaining Orbitrap analyses were
more reproducible at both the peptide and protein levels than were analyses on LTQ
instruments. The difference in median reproducibility by instrument class ranged between 5.2%
and 6.6%, depending on which study was analyzed and whether peptides or proteins were
examined. Although Orbitraps can produce more reproducible identifications than LTQs, the
difference is not large, and Orbitraps that are not operating in peak form lack this advantage.

Impact of repeatability on discrimination of proteomic differences
One of the most important applications of LC-MS/MS-based shotgun proteomics is to identify
protein differences between different biological states. This approach is exemplified by the
analysis of proteomes from tissue or biofluid samples that represent disease states, such as
tumor tissues and normal controls. These studies typically compare multiple technical
replicates for one sample type to technical replicates for a second sample type. Identified
proteins that differ in spectral counts or intensities between samples may be considered
biomarker candidates, which may be further evaluated in a biomarker development
pipeline31. Repeatability of the analyses is a critical determinant of the ability to distinguish
true differences between sample types.

The repeatability analyses described above revealed that approximately half the peptides
observed in LC-MS/MS analysis will be identified in a second replicate. This low degree of
overlap implies that the total number of peptides identified grows rapidly for the first few
replicates and then slows. A plot of this growth for the six yeast replicates and five NCI-20
replicates of Study 5 is presented in Figure 9. The rates at which newly-identified peptides
accumulated for NCI-20 and yeast replicates were indistinguishable. The first two replicates
for NCI-20 identified an average of 41% more peptides per instrument than did the first
replicate alone. Similarly, two replicates for yeast contributed an average of 38% more peptides
than a single analysis. Three replicates identified 59% more peptides for NCI-20 than did the
first replicate alone, whereas three replicates for yeast identified 63% more peptides than one
replicate. The similarity of these trends implies that one cannot choose an appropriate number
of replicates based on sample protein complexity alone. By collecting triplicates, researchers
will, at a minimum, be able to estimate the extent to which new replicates improve the sampling
of these complex mixtures.

In this analysis, independent technical replicates were evaluated for cumulative identifications.
If maximizing distinct peptide identifications were the priority, however, one might instead
minimize repeated identifications among replicates to as great an extent as possible. Some
instrument vendors have implemented features to force subsequent replicates to avoid the ions
sampled for tandem mass spectrometry in an initial run (such as RepeatIDA from Applied
Biosystems). Researchers have also used accurate mass exclusion lists32 or customized
instrument method generation33 to reduce the re-sampling of peptides in repeated LC-MS/MS
analysis. The use of such strategies would lead to reduced repeatability for peptide ions and
steeper gains in identifications from replicate to replicate.

Discrimination of proteomic differences between samples based on spectral count data requires
relatively low variability in counts observed across replicates of the same samples. To
characterize spectral count variation, we examined the counts observed for each protein across
six replicates of yeast for each instrument in Study 5. Coefficients of variation (CVs), which
compare the standard deviation to the mean for these counts, have two significant drawbacks
for this purpose. First, they do not take into account the variation in overall sensitivity for some
replicates (as illustrated by the spread of data points for each instrument in Figure 3). Second,
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CVs are generally highest for proteins that produce low spectral counts. We developed a
statistic based on the multivariate hypergeometric (MVH) distribution instead (see Methods)
that addressed both of these problems. In this approach, we compute the ratio between two
probabilities. The first is the probability that spectral counts for a given protein would be
distributed across replicates as actually observed, given the number of all identified spectra in
each replicate. The second is the probability associated with the most likely distribution of
these spectral counts across replicates. The ratio, expressed in natural log scale, asks how much
less likely a particular distribution is than the most common distribution of spectral counts.

The results, illustrated in Figure 10 and Table 2 and Table 3, show considerable spread in the
probability ratios for each instrument. The highest value (i.e. least stable spectral counts) for
a protein in LTQ@73, for example, is 5.29 on a natural log scale, indicating that the observed
spectral count distribution for this protein was approximately 200 times less likely than the
most equitable distribution of spectral counts (mostly due to the low spectral counts observed
in replicates 5 and 6). The proteins with extreme MVH scores for each instrument reflect that
examining spectral counts for large numbers of proteins invariably reveals a set of proteins
with uneven spectral counts, even when the sample is unchanged. This phenomenon reflects
the need for multiple-testing correction in the statistical techniques employed for spectral count
differentiation.

The median cases for these scores are examples of routine disparities in spectral counts. The
medians for Orbitrap instruments were approximately half of the LTQ medians (Student’s t-
Test p-value=0.00617, using unpaired samples, two-sided outcomes, and unequal variances);
spectral counts vary more in LTQ instruments. As a result, biomarker studies employing LTQ
spectrum counts need to include more replicates than those employing Orbitraps to achieve
the same degree of differentiation.

Conclusion
The CPTAC network undertook a series of interlaboratory studies to systematically evaluate
LC-MS/MS proteomics platforms. We employed defined protein mixtures and SOPs to enable
comparisons under conditions where key system variables were held constant, in order to
discern inherent variability in peptide and protein detection for Thermo LTQ and Orbitrap
instruments. The data documented repeatability and reproducibility of LC-MS/MS analyses
and quantified contributions of instrument class and performance, protein and peptide
characteristics and sample load and complexity. Several of our observations are consistent with
broad experience in the field. For example, peptide detection is more variable than protein
detection. High resolution Orbitraps outperform lower resolution LTQs in repeatability and
reproducibility and in stability of spectral count data, provided that the Orbitrap is optimally
tuned and that database searches are optimized. On the other hand, our data revealed some
surprising insights. The first is that peptide and protein identification repeatability is
independent of both sample complexity and sample load, at least in the range of sample types
we studied—defined protein mixtures to complex proteomes. This indicates that essentially all
protein digestions produce sufficiently complex peptide mixtures to challenge comprehensive
LC-MS/MS identification.

Nevertheless, a standardized analysis platform yields a high degree of repeatability and
reproducibility (~70–80%) in protein identifications, even from complex mixtures. Taken
together with the accumulation of identifications with replicate analyses, this indicates that
LC-MS/MS systems can generate consistent inventories of proteins even in complex biological
samples. How this translates into consistent detection of proteomic differences between
different phenotypes remains to be evaluated and will be the subject of future CPTAC studies.
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Figure 1. Overview of CPTAC Unbiased Discovery Working Group interlaboratory studies
All studies employed the NCI-20 reference mixture. Beginning with Study 3, a yeast lysate
reference sample was introduced. Studies 2, 3, and 5 revealed ambiguities in the SOP that were
corrected in subsequent versions. Studies 2–8 all prescribed blanks and washes between
samples. Study 8 returned to lab-specific protocols in examining two different yeast
concentrations. The full details of the SOP versions are available in Supplementary
Information.
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Figure 2. Bioinformatic variability in Orbitrap data for Study 6 Yeast
We evaluated the impact of bioinformatic changes in evaluating Orbitrap spectra for yeast in
Study 6. Panel A evaluates the best precursor tolerance for database search in m/z space. Each
instrument is represented by a different shape (see legend on Figure 3), with the number of
identifications normalized to the highest value produced for that instrument. Too low a
tolerance prevents correct sequences from being compared to some spectra, while too high a
tolerance results in excessive comparisons for each spectrum. Panel B reveals that the peaks
counts from tandem mass spectra were repeatable for a given instrument but varied
considerably among instruments. Panel C shows that database searches that allow for a one
neutron variance from reported precursor m/z improved peptide identification in all but one of
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the twelve replicates. Panel D demonstrates that substituting a different search engine (X!
Tandem, in this case) will dramatically change which sequences are identified, even if the total
number of identified spectra is essentially the same.
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Figure 3. Overview of identified spectra in yeast replicates
 LTQ@73
 LTQx@65
 LTQ2@95
 LTQc@65
 Orbi@86
 OrbiO@65
 OrbiP@65
 OrbiW@56
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The number of spectra matched to peptide sequences varied considerably from instrument to
instrument. These four graphs show the identification success for each yeast replicate in each
instrument for Studies 5, 6, and 8 (two concentrations). LTQs are colored blue, and Orbitraps
are shown in pink. A different shape represents each instrument appearing in the studies, as
described in the legend. Each symbol reports identifications from an individual technical
replicate. Despite SOP controls in Studies 5 and 6, instruments differed from each other by
large margins. The Orbitrap at site 86 delivered the highest performance in Study 5, but
performance decreased using the higher flow rate specified by the SOP in Study 6. Increasing
the yeast concentration by five-fold in Study 8 increased the numbers of spectra identified.
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Figure 4. Peptide and protein repeatability
To assess repeatability, we evaluated the overlapping fraction of identified peptides in pairs of
technical replicates. For example, if 2523 and 2663 peptides were identified in two different
replicates and 1362 of those sequences were common to both lists, the overlap between these
replicates was 35.6%. Shaded boxes represent peptide repeatability, and open boxes represent
protein repeatability (where two distinct peptide sequences were required for protein to be
detected). For Study 5, only peptide repeatability was characterized; the boxes represent the
inter-quartile range, while the whiskers represent the full range of observed values (Panels A
and B). The mid-line in each box is the median. The six replicates of yeast in Study 5 enabled
fifteen pair-wise comparisons per instrument, while the five replicates of NCI-20 enabled ten
comparisons for that sample. Studies 6 (Panels C and D) and 8 (Panels E and F) produced
triplicates, enabling only three pair-wise comparisons for repeatability. These images show all
three values.
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Figure 5. Peptide tryptic specificity impacts repeatability
Enzymatic digestion by trypsin favors the production of peptides that conform to standard
cleavages after Lys or Arg on both termini. Fully tryptic peptides feature such cleavages on
both termini, while semi-tryptic peptides match this cleavage motif on only one terminus. As
shown in panel A, an average of 29% of fully tryptic yeast peptides appeared in all three
replicates from Study 6. Semi-tryptic peptides were detected with lower probability. On
average, only 15% of these peptides appeared in all three replicates. Though a higher percentage
of semi-tryptic peptides were observed in Sigma UPS 1 (panels C and D), the repeatability for
semi-tryptic peptides was lower than for tryptic sequences.
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Figure 6. Precursor ion intensity affects peptide repeatability
We examined the MS ion intensity of peptides from the Study 5 NCI-20 quintuplicates in three
LTQ and three Orbitrap instruments. When a peptide was observed in multiple replicates, we
recorded the median intensity observed. These graphs depict the distribution of intensities for
peptides by the number of replicates in which they were identified. Peptides that were observed
in only one replicate were considerably less intense than those appearing in multiple replicates.
Orbitrap and LTQ instruments report intensities on different scales as reflected by the x-axes
of the graphs.
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Figure 7. Protein of origin impacts repeatability
Peptide identifications from major proteins are more repeatable than those from minor proteins.
Yeast data from Study 5, however, reveal that peptides from major proteins (here defined as
those producing more than 32 peptides in the data accumulated for all instruments) constitute
40% of the peptides observed in all six replicates and 18% of the peptides observed in only
one replicate. Peptides that are the sole evidence for a protein constitute 0% of the peptides
observed in all six replicates but 13% of the peptides observed only once. These trends illustrate
that major proteins contribute peptides across the entire range of repeatability. Achieving
optimal sensitivity requires the acceptance of less-repeated peptides; in this data set, single-
observation peptides were more than twice as numerous as any other set.
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Figure 8. Reproducibility of yeast identifications among instruments
In this analysis, the identifications from each replicate are compared to the identifications of
replicates from other instruments of the same type in the same study to determine the overlap
in identifications. For example “S6-LTQ” shows the overlaps between pairs of RAW files from
LTQs in Study 6, where each pair was required to come from two different LTQs. Shaded
boxes represent peptides, while white boxes represent proteins. Because the Orbitrap at site 86
yielded abnormally low reproducibility in Study 6, the comparisons including this instrument
were separated from the other three Orbitraps in this Study.
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Figure 9. Peptide accumulation with additional replicates
Because peptides are partially sampled in each LC-MS/MS analysis, repeated replicates can
build peptide inventories. Data from Study 5 reveal that this growth is not limited to the complex
yeast samples but is also observed in the simple NCI-20 mixture. Blue lines represent growth
in LTQ peptide lists, while pink lines represent Orbitrap peptide lists. The second NCI-20
replicate for the Orbitrap at site 86 identified more peptides than any other, producing a
substantial increase in peptides from the first to the second replicate.
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Figure 10. Study 5 yeast protein spectral count stability
Spectral count differentiation attempts to detect differences between samples by recognizing
changes in the numbers of spectra identified to those proteins. This image depicts the stability
of spectral counts across six replicates when the sample is unchanged. A value of zero
represents spectral counts that are spread across the replicates as evenly as possible. A value
of 5 indicates that the ratio of probabilities for the observed spread of spectral counts versus
the even distribution is e5=148. LTQs showed greater instability of spectral counts than did
Orbitraps.
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Table 1

Identification counts for all included samples

Sample and
Replicates

Instrument
and Site

Identified
Spectra

Distinct
Peptides

Multipeptide
Proteins

Study5 NCI20 LTQ@73 1085 358 8

(5 replicates) LTQ2@95 888 300 7

LTQc@65 1446 455 8

Orbi@86 968 374 11

OrbiP@65 1660 424 10

OrbiW@56 1708 444 11

Study5 Yeast LTQ@73 19341 6261 880

(6 replicates) LTQ2@95 14054 4574 730

LTQc@65 21209 7118 993

Orbi@86 33301 8977 1280

OrbiP@65 19118 4652 627

OrbiW@56 23245 5708 813

Study6 Yeast LTQ@73 8832 4263 681

(3 replicates) LTQ2@95 7471 3537 568

LTQx@65 7763 3859 610

Orbi@86 8448 4354 795

OrbiO@65 15177 7110 1024

OrbiP@65 13465 6111 838

OrbiW@56 11675 5727 823

Study6 UPS 1 LTQ@73 991 378 51

(3 replicates) LTQ2@95 1257 494 50

LTQx@65 1367 562 56

Orbi@86 877 366 51

OrbiO@65 1619 692 58

OrbiP@65 2143 798 59

OrbiW@56 1296 617 59

Study8 Yeast LTQ@73 22740 8322 1039

High concentration LTQ2@95 13909 5470 819

(3 replicates) LTQx@65 14010 6642 951

Orbi@86 18943 7362 939

OrbiO@65 17037 6891 918

OrbiW@56 25082 9816 1111

Study8 Yeast LTQ@73 13801 5586 751

Low concentration LTQ2@95 6274 2859 478

(3 replicates) LTQx@65 6899 3467 583

Orbi@86 17304 7407 957

OrbiO@65 12018 5133 789
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Sample and
Replicates

Instrument
and Site

Identified
Spectra

Distinct
Peptides

Multipeptide
Proteins

OrbiW@56 19782 8132 1048
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